首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Six Saccharomyces cerevisiae strains from cachaça fermentation were characterized for biomass, ethanol, glycerol, and acetic acid yields, as well as productivity. Three strains presenting the best fermentation parameters were selected for cachaça production. The experiments were carried out in an industrial distillery that distills this beverage in a stainless steel column, and in a traditional distillery that uses copper alembic for distillation. The permanence of the selected strains was studied by restriction fragment analysis of mitochondrial DNA. Strains UFMG-A1007 and UFMG-A2097 were prevalent in the vats during the 5 days of the fermentation period. Non-Saccharomyces strains were isolated during the entire fermentation period. In general, the cachaças produced in the stainless steel column had the highest concentrations of volatile acidity, acetaldehyde, esters, and higher alcohols. Both cachaças did not differ statistically in aroma, taste, and overall impression. The use of these indigenous S. cerevisiae strains as starter ferment could improve the sensory attributes of both industrial and traditional cachaças.  相似文献   

2.
The aim of this research was to identify the Saccharomyces spp. associated with Žilavka grapes and to evaluate their enzymatic activities, H2S production and micro-fermentation performance. For this purpose, a total of 143 yeast strains isolated from three production areas of the Mostar wine region (Bosnia and Herzegovina) were studied and analysed. Firstly, yeasts were identified to genus level by growth on WL nutrient agar and the test of assimilation of lysine. Later, molecular identification at species level was carried out with RFLP analysis of 18S rDNA + ITS region, and at strain level with microsatellite-primed PCR (MSP-PCR). At physiological level yeast strains were grouped into different clusters by means of the Joining-Tree-Clustering-Method. All yeasts tested were identified as S. cerevisiae, resulting a total of 18 different strains. All of the investigated strains produced hydrogen sulphide, 89% were able to complete the fermentation, and none of them was able to synthesize killer toxins. Since enzymes play a very important role in wine aroma development, it was very encouraging that 33% of the strains were able to synthesize pectinolytic enzyme but only one produced β-glucosidase. In the second part of the selection process two indigenous strains were compared with commercial yeast in a microvinification and Žilavka wines with different profiles of volatiles were obtained. This research represents a first step in the selection of indigenous yeast strains from the Mostar region with the goal of maintaining the specific organoleptic characteristics of Žilavka wine.  相似文献   

3.
The present study deals with submerged ethanol, citric acid, and α-amylase fermentation by Saccharomyces cerevisiae SDB, Aspergillus niger ANSS-B5, and Candida guilliermondii CGL-A10, using date wastes as the basal fermentation medium. The physical and chemical parameters influencing the production of these metabolites were optimized. As for the ethanol production, the optimum yield obtained was 136.00 ± 0.66 g/l under optimum conditions of an incubation period of 72 h, inoculum content of 4% (w/v), sugars concentration of 180.0 g/l, and ammonium phosphate concentration of 1.0 g/l. Concerning citric acid production, the cumulative effect of temperature (30°C), sugars concentration of 150.0 g/l, methanol concentration of 3.0%, initial pH of 3.5, ammonium nitrate concentration of 2.5 g/l, and potassium phosphate concentration of 2.5 g/l during the fermentation process of date wastes syrup did increase the citric acid production to 98.42 ± 1.41 g/l. For the production of α-amylase, the obtained result shows that the presence of starch strongly induces the production of α-amylase with a maximum at 5.0 g/l. Among the various nitrogen sources tested, urea at 5.0 g/l gave the maximum biomass and α-amylase estimated at 5.76 ± 0.56 g/l and 2,304.19 ± 31.08 μmol/l/min, respectively after 72 h incubation at 30°C, with an initial pH of 6.0 and potassium phosphate concentration of 6.0 g/l.  相似文献   

4.
Yeast cryotolerance may be advantageous for cider making, where low temperatures are usually employed. Here, we crossed the cryotolerant S. eubayanus with a S. cerevisiae wine strain and assessed the suitability of the hybrids for low-temperature cider fermentation. All strains fermented the juice to 5% ABV, but at different rates; hybrid strains outperformed S. cerevisiae, which was sensitive to low temperatures. The best hybrid fermented similarly to S. eubayanus. S. eubayanus produced sulphurous off flavours which masked a high concentration of fruity ester notes. This phenotype was absent in the hybrid strains, resulting in distinctly fruitier ciders. Aroma was assessed by an independent consumer panel, which rated the hybrid ciders as identical to the wine strain cider. Both were significantly more pleasant than the S. eubayanus cider. Interspecific hybridization can apparently be used effectively to improve low-temperature fermentation performance without compromising product quality.  相似文献   

5.
The aim of this work was to evaluate the suitability of four strains of Saccharomyces cerevisiae endowed with in vitro β-glucosidase activity to improve the Sangiovese wine aroma profiles. In particular the effects of the strains on fermentation kinetics, wine sugar and acid concentrations, volatile molecule profiles and colour parameters were evaluated. Moreover their effects on anthocyanins, anthocyanidins and poliphenols were evaluated. These four strains of S. cerevisiae were tested in comparison with one commercial strain and with a spontaneous fermentation in the presence and in the absence of paraffin oil. The results showed that the four wild strains had high fermentation rates and an efficient conversion of grape sugars to alcohol. However, each strain imparted specific features to the wine. AS11 and AS15 gave rise to wine having low volatile acidity values associated to high levels of linalool and nerolidol. They provoked decrease of anthocyanins accompanied by the increase of some anthocyanidins. S. cerevisiae BV12 and BV14 showed the best performances producing wines with the lowest residual sugar contents and volatile acidity values, high levels of nerolidol and citronellol without detrimental effects on wine colour.  相似文献   

6.
To improve ethanol production in Saccharomyces cerevisiae, two yeast strains were constructed. In the mutant, KAM-4, the GPD1 gene, which encodes a glycerol 3-phosphate dehydrogenase of S. cerevisiae to synthesize glycerol, was deleted. The mutant KAM-12 had the GLT1 gene (encodes glutamate synthase) placed under the PGK1 promoter while harboring the GPD1 deletion. Notably, overexpression of GLT1 by the PGK1 promoter along with GPD1 deletion resulted in a 10.8% higher ethanol production and a 25.0% lower glycerol formation compared to the wild type in anaerobic fermentations. The growth rate of KAM-4 was slightly lower than that of the wild type under the exponential phase whereas KAM-12 and the wild type were indistinguishable in the biomass concentration at the end of growth period. Meanwhile, dramatic reduction of formation of acetate and pyruvic acid was observed in all the mutants compared to the wild type.  相似文献   

7.
We constructed two recombinant strains of Saccharomyces cerevisiae in which the GPD2 gene was deleted using a one-step gene replacement method to minimize formation of glycerol and improve ethanol production. In addition, we also over-expressed the GLT1 gene by a two-step gene replacement method to overcome the redox-imbalancing problem in the genetically modified strains. The result of anaerobic batch fermentations showed that the rate of growth and glucose consumption of the KAM-5 (MATα ura3 gpd2Δ::RPT) strain were slower than the original strain, and the KAM-13 (MATα ura3 gpd2Δ::RPT P PGK -GLT1) strain, however, was indistinguishable compared to the original strain using the same criteria, as analyzed. On the other hand, when compared to the original strain, there were 32 and 38% reduction in glycerol formation for KAM-5 and KAM-13, respectively. Ethanol production increased by 8.6% for KAM-5 and 13.4% for KAM-13. Dramatic reduction in acetate and pyruvic acid was also observed in both mutants compared to the original strains. Although gene GPD2 is responsible for the glycerol synthesis, the mutant KAM-13, in which glycerol formation was substantially reduced, was able to cope and maintain osmoregulation and redox balance and have increased ethanol production under anaerobic fermentations. The result verified the proposed concept of increasing ethanol production in S. cerevisiae by genetic engineering of glycerol synthesis and over-expressing the GLT1 gene along with reconstituted nicotinamide adenine dinucleotide metabolism.  相似文献   

8.
9.
10.
The alcoholic fermentation for fuel ethanol production in Brazil occurs in the presence of several microorganisms present with the starter strain of Saccharomyces cerevisiae in sugarcane musts. It is expected that a multitude of microbial interactions may exist and impact on the fermentation yield. The yeast Dekkera bruxellensis and the bacterium Lactobacillus fermentum are important and frequent contaminants of industrial processes, although reports on the effects of both microorganisms simultaneously in ethanolic fermentation are scarce. The aim of this work was to determine the effects and interactions of both contaminants on the ethanolic fermentation carried out by the industrial yeast S. cerevisiae PE-2 in two different feedstocks (sugarcane juice and molasses) by running multiple batch fermentations with the starter yeast in pure or co-cultures with D. bruxellensis and/or L. fermentum. The fermentations contaminated with D. bruxellensis or L. fermentum or both together resulted in a lower average yield of ethanol, but it was higher in molasses than that of sugarcane juice. The decrease in the CFU number of S. cerevisiae was verified only in co-cultures with both D. bruxellensis and L. fermentum concomitant with higher residual sucrose concentration, lower glycerol and organic acid production in spite of a high reduction in the medium pH in both feedstocks. The growth of D. bruxellensis was stimulated in the presence of L. fermentum resulting in a more pronounced effect on the fermentation parameters than the effects of contamination by each microorganism individually.  相似文献   

11.

Objectives

To convert α-acetolactate into acetoin by an α-acetolactate decarboxylase (ALDC) to prevent its conversion into diacetyl that gives beer an unfavourable buttery flavour.

Results

We constructed a whole Saccharomyces cerevisiae cell catalyst with a truncated active ALDC from Acetobacter aceti ssp xylinum attached to the cell wall using the C-terminal anchoring domain of α-agglutinin. ALDC variants in which 43 and 69 N-terminal residues were absent performed equally well and had significantly decreased amounts of diacetyl during fermentation. With these cells, the highest concentrations of diacetyl observed during fermentation were 30 % less than those in wort fermented with control yeasts displaying only the anchoring domain and, unlike the control, virtually no diacetyl was present in wort after 7 days of fermentation.

Conclusions

Since modification of yeasts with ALDC variants did not affect their fermentation performance, the display of α-acetolactate decarboxylase activity is an effective approach to decrease the formation of diacetyl during beer fermentation.
  相似文献   

12.
13.
14.
Huang B  Guo J  Yi B  Yu X  Sun L  Chen W 《Biotechnology letters》2008,30(7):1121-1137
Heterologous expression of genes involved in the biosynthesis of various products is of increasing interest in biotechnology and in drug research and development. Microbial cells are most appropriate for this purpose. Availability of more microbial genomic sequences in recent years has greatly facilitated the elucidation of metabolic and regulatory networks and helped gain overproduction of desired metabolites or create novel production of commercially important compounds. Saccharomyces cerevisiae, as one of the most intensely studied eukaryotic model organisms with a rich density of knowledge detailing its genetics, biochemistry, physiology, and large-scale fermentation performance, can be capitalized upon to enable a substantial increase in the industrial application of this yeast. In this review, we describe recent efforts made to produce commercial secondary metabolites in Saccharomyces cerevisiae as pharmaceuticals. As natural products are increasingly becoming the center of attention of the pharmaceutical and nutraceutical industries, such as naringenin, coumarate, artemisinin, taxol, amorphadiene and vitamin C, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures with unique properties.  相似文献   

15.
To investigate effects of different pyruvate decarboxylases on isobutanol titers in Saccharomyces cerevisiae, single-gene deletion of the three PDCs genes encoding pyruvate decarboxylases were constructed in this study. In addition, we over-expressed Ilv2, which catalyzed the first step in the valine synthetic pathway, and Bat2, which was the cytoplasmic branched-chain amino-acid aminotransferase that catalyzed L-valine to 2-ketoisovalerate, to increase isobutanol production in the genetically modified strains. Our results showed that knockout of PDC5 were one of the main factors among the three PDC genes for improving isobutanol titers in S. cerevisiae. Additionally, we found that deletion of PDC5 in strain carrying overexpressed ILV2 and ARO10 resulted in 8-fold higher isobutanol productivity as compared to the control strain in micro-aerobic fermentations. Our results also suggested that engineered strain pdc5ΔpILV2 pARO10 generated lower ethanol titers and higher acetate acid titers than the control strain, while the growth rate and glucose consumption rate of engineered strain pdc5ΔpILV2 pARO10 were slightly lower than that of the control strain. Meanwhile, the biomass concentration of pdc5ΔpILV2 pARO10 decreased dramatically than that of the control strain.  相似文献   

16.
During Escherichia coli growth on glucose, uptake exceeds the requirement of flux to precursors and the surplus is excreted as acetate. Beside the loss of carbon source, the excretion of a weak acid may result in increased energetic demands and hence a decreased yield. The deletion of ptsG, the gene coding for one of the components (IICB(Glc)) of the glucose-phosphoenolpyruvate phosphotransferase system (Glc-PTS) reduced glucose consumption and acetate excretion. Induction of protein production at the onset of cultivation decreased growth rate and glucose consumption rate for both the WT and the mutant strains. The mutant strain produced beta-galactosidase at higher rates than the wild-type strain while directing more carbon into biomass and CO(2) and less into acetate.  相似文献   

17.
Oxygen is sometimes deliberately introduced in winemaking at various stages to enhance yeast biomass formation and prevent stuck fermentation. However, there is limited information on how such interventions affect the dynamics of yeast populations. Our previous study in synthetic grape juice showed that oxygen supply enhances the persistence of Lachancea thermotolerans, Torulaspora delbrueckii and Metschnikowia pulcherrima. The three non-Saccharomyces yeasts showed differences in growth as a function of oxygen. The present study focused on evaluating the influence of short oxygen pulses on population dynamics and the aroma profile of Chardonnay wine inoculated with L. thermotolerans and Saccharomyces cerevisiae. The results confirmed a positive effect of oxygen on the relative performance of L. thermotolerans. The mixed culture fermentation with L. thermotolerans with S. cerevisiae developed a distinct aroma profile when compared to monoculture S. cerevisiae. Specifically, a high concentration of esters, medium chain fatty acids and higher alcohols was detected in the mixed culture fermentation. The data also showed that the longer persistence of L. thermotolerans due to addition of oxygen pulses influenced the formation of major volatile compounds such as ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl caprylate, ethyl caprate, ethyl-3-hydroxybutanoate, ethyl phenylacetate, propanol, isobutanol, butanol, isoamyl alcohol, hexanol, isobutyric acid, butyric acid, iso-valeric acid, hexanoic acid, octanoic acid, and decanoic acid.  相似文献   

18.
Raffia wine is a traditional alcoholic beverage produced in several African countries where it plays a significant role in traditional customs and population diet. Alcoholic fermentation of this beverage is ensured by a complex natural yeast flora which plays a decisive role in the quality of the final product. This present study aims to evaluate the distribution and the diversity of the yeast strains isolated in raffia wine from four sampling areas (Abengourou, Alépé, Grand-Lahou and Adzopé) in Côte d’Ivoire. Based on the D1/D2 domain of the LSU rDNA sequence analysis, nine species belonging to six genera were distinguished. With a percentage of 69.5 % out of 171 yeast isolates, Saccharomyces cerevisiae was the predominant species in the raffia wine, followed by Kodamaea ohmeri (20.4 %). The other species isolated were Candida haemulonii (4.1 %), Candida phangngensis (1.8 %), Pichia kudriavzevii (1.2 %), Hanseniaspora jakobsenii (1.2 %), Candida silvae (0.6 %), Hanseniaspora guilliermondii (0.6 %) and Meyerozyma caribbica (0.6 %). The molecular characterization of S. cerevisiae isolates at the strain level using the PCR-interdelta method revealed the presence of 21 profiles (named I to XXI) within 115 isolates. Only four profiles (I, III, V and XI) were shared by the four areas under study. Phenotypic characterization of K. ohmeri strains showed two subgroups for sugar fermentation and no diversity for the nitrogen compound assimilations and the growth at different temperatures.  相似文献   

19.
Erwinia carotovora subspecies betavasculorum, also known as E. betavasculorum and Pectobacterium betavasculorum, is a soil bacterium that has the capacity to cause root rot necrosis of sugarbeets. The qualitatively different pathogenicity exhibited by the virulent E. carotovora strain and two avirulent strains, a Citrobacter sp. and an Enterobacter cloacae, was examined using digital analysis of photographic evidence of necrosis as well as for carbohydrate, ethane, and ethylene release compared with uninoculated potato tuber slices. Visual scoring of necrosis was superior to digital analysis of photographs. The release of carbohydrates and ethane from potato tuber slices inoculated with the soft rot necrosis-causing Erwinia was significantly greater than that of potato tuber slices that had not been inoculated or that had been inoculated with the nonpathogenic E. cloacae and Citrobacter sp. strains. Interestingly, ethylene production from potato slices left uninoculated or inoculated with the nonpathogenic Citrobacter strain was 5- to 10-fold higher than with potato slices inoculated with the pathogenic Erwinia strain. These findings suggest that (1) carbohydrate release might be a useful measure of the degree of pathogenesis, or relative virulence; and that (2) bacterial suppression of ethylene formation may be a critical step in root rot disease formation.  相似文献   

20.
A filamentous fungus displaying high cellulase activity was isolated from a compost heap with triticale (a wheat-rye hybrid) as the main constituent. It was preliminarily identified as a Talaromyces pinophilus species. A 2577 base pair β-glucosidase gene was cloned from complementary DNA and heterologously expressed in Saccharomyces cerevisiae. The recombinant β-glucosidase production profile was assessed and compared to that of the Saccharomycopsis fibuligera β-glucosidase which served as a benchmark. The enzyme was also characterised in terms of pH and temperature tolerance as well as response to inhibitors. Maximal extracellular β-glucosidase activity of 0.56 nkat/mg total protein was measured using p-nitrophenyl-β-D-glucopyranoside as substrate. The recombinant protein displayed a pH optimum of 4.0, and good thermostability as 70% of maximal enzyme activity was retained after 1 h at 60 °C. Activity of the recombinant β-glucosidase was adversely affected by the presence of glucose and ethanol at higher concentrations while xylose had no effect. The expression of the T. pinophilus β-glucosidase did not reach the same titres as for the benchmark; however, in the context of constructing a yeast strain for bioethanol production in a consolidated bioprocess, the enzyme may still show good potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号