首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UCB (umbilical cord blood) as a resource of MSCs (mesenchymal stem cells) is widely accepted, but the quantity and characteristics of UCB-MSCs from different gestational ages have not been well studied. We have quantified the number of MSCs in UCB at different gestational ages using a multi-colour flowcytometer and compared the cell proliferation rates of these UCB-MSCs. Defining MSCs as CD44+/CD105+/CD34-/CD45 population, their numbers declined in the UCB at the gestational age. Proliferation rates were significantly higher in UCB before term than at full term. Non-full term UCB samples may be a better source of MSCs.  相似文献   

2.
Stem cells dwell at the “stem cell niche” to accomplish a series of biological processes. The composition of the niche should be determined because the insufficient understanding of this feature limits the development in the study of stem cells. We showed in our study on mesenchymal stem cells (MSCs) that the MSCs first neighbored to CD31+ cells, which proved to be endothelial progenitor cells (EPCs), and formed a group of cell colony before they exerted their biological functions. It was further proved that EPCs have close interactions with MSCs and promoted the self-renewal of the MSCs in vitro and in vivo. Together with these achievements, we hypothesized that EPCs may be a possible biological component of the MSC stem cell niche and affect the biological processes of MSCs.  相似文献   

3.
Adult mesenchymal stem cells (MSCs) have the capacity for self-renewal and for differentiating into a variety of cells and tissues. They may leave their niche to migrate to remote tissues and play a critical role in wound repair and tissue regeneration. Because of their multipotency, easy isolation and culture, highly expansive potential, and immunosuppression properties, these cells may be an attractive therapeutic tool for regenerative medicine and tissue engineering. Several studies have indicated a contribution of MSCs to reconstituting skin in cutaneous wounds, but problems still need resolution before MSCs can be widely used clinically. This review focuses mainly on the benefits of MSCs in skin wound healing and tissue regeneration and on the questions that remain to be answered before MSCs can be used in clinical practice. This study was supported in part by the National Natural Science Foundation of China (30730090, 30672176, 30500194) and by State Key Development Program of Basic Research of China (973 Program, 2005CB522603).  相似文献   

4.
Mesenchymal stem cells (MSCs) have a great capacity for use in regenerative medicine and other clinical applications. However, one question creating curiosity of their use, is how they are affected by ageing. As we now live within an ageing population, the prevalence of age related disorders is increasing, so it is important to investigate how effectively MSCs from older patients can be expanded and differentiated in vitro before their use in autologous cell transplantation. This paper will look at how ageing effects proliferation potential, differentiation potential and cell surface characterisation of human mesenchymal stem cells.  相似文献   

5.
In recent years, transplantation of mesenchymal stem cells (MSCs) has attracted much attention as a potential cell-based therapy for acute liver failure (ALF). As an inducible enzyme, heme oxygenase 1 (HO-1) has been reported to have cytoprotective, anti-apoptotic and immunoregulatory effects. Autophagy, a conserved catabolic process in cells, may be an important pathway for MSCs to treat ALF. In this study, we aimed to explore whether MSCs treat ALF by regulating autophagy and whether HO-1 was involved in the same pathway. Bone marrow-derived MSCs were isolated from Sprague-Dawley rats and cultured according to an established protocol. Co-culture systems of MSCs and hepatocytes were used to assess autophagy in the treatment of ALF. Meanwhile, MSCs were transplanted into rats with d-galactosamine (Gal)-induced ALF. Autophagy inhibitor (3-methyladenine, 3-MA), HO-1 inhibitor (zinc protoporphyrin, ZnPP) and PI3K specific inhibitor (LY294002) were employed in the study. Blood samples and liver tissues were collected before euthanasia. Survival rate, liver function, inflammatory factors, histology, Ki67 and TUNEL staining were determined. MSCs transplantation alleviated ALF both in vivo and in vitro. Autophagy and autophagy-related proteins were significantly up-regulated during MSCs treatment. 3-MA attenuated the therapeutic effect of MSCs. Administration of LY294002 before ALF induction inhibited hepatocyte autophagy. During the MSCs treatment, the HO-1 expression was increased, while inhibiting HO-1 attenuated the therapeutic effect of MSCs as well as hepatocyte autophagy. These findings suggested MSCs could alleviate ALF by increasing the HO-1 expression, which played an important role in activating autophagy through PI3K/AKT signaling pathway.  相似文献   

6.
慢病毒载体感染成年食蟹猴骨髓间充质干细胞   总被引:1,自引:0,他引:1  
骨髓间充质干细胞(Mesenchymal stem cells,MSCs)具有增殖和多向分化潜能,临床应用广泛,近年来备受关注。另一方面,MSCs易于转导和表达外源基因,是理想的基因工程细胞。非人灵长类(NHPs)和人类具有非常相近的遗传背景,NHPs模型在评价药物疗效和移植治疗等方面具有不可替代的价值。本研究采用密度梯度离心法分离成年食蟹猴骨髓单核细胞(Marrow mononuclear cells,MNCs),贴壁培养MSCs。同时构建表达绿色荧光蛋白(Green fluorescent protein,GFP)的慢病毒载体,感染成年食蟹猴MSCs。结果显示,体外培养的成年食蟹猴MSCs均感染猴泡沫病毒(Simian foamy virus,SFV),体外培养成年食蟹猴MSCs必须添加抗病毒药物Tenofovir。但由于食蟹猴MSCs感染SFV,以及培养中添加了抗病毒药物Tenofovir,慢病毒载体的感染效率明显降低(10%)。本研究通过停用抗病毒药,在细胞复苏后6d转染慢病毒,可大幅提高慢病毒的感染效率(50%)。为成年食蟹猴MSCs作为基因工程细胞应用于实验和临床研究提供了技术保证。  相似文献   

7.
The prospective clinical use of multipotent mesenchymal stromal cells (MSCs) holds enormous promise for the treatment of a large number of degenerative and age-related diseases. In particular, autologous MSCs isolated from bone marrow (BM) are considered safe and have been extensively evaluated in clinical trials. Nevertheless, different efficacies have been reported, depending on the health status and age of the donor. In addition, the biological functions of BM-MSCs from patients with various diseases may be impaired. Furthermore, medical treatments such as long-term chemotherapy and immunomodulatory therapy may damage the BM microenvironment and affect the therapeutic potential of MSCs. Therefore, a number of practical problems must be addressed before autologous BM-MSCs can be widely applied with higher efficiency in patients. As such, this review focuses on various factors that directly influence the biological properties of BM-MSCs, and we discuss the possible mechanisms of these alterations.  相似文献   

8.
Circulating stem cells home within the myocardium, probably as the first step of a tissue regeneration process. This step requires adhesion to cardiac microvascular endothelium (CMVE). In this study, we studied mechanisms of adhesion between CMVE and mesenchymal stem cells (MSCs). Adhesion was studied in vitro and in vivo. Isolated 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-labeled rat MSCs were allowed to adhere to cultured CMVE in static and dynamic conditions. Either CMVE or MSCs were pretreated with cytokines [IL-1beta, IL-3, IL-6, stem cell factor, stromal cell-derived factor-1, or TNF-alpha, 10 ng/ml]. Control or TNF-alpha-treated MSCs were injected intracavitarily in rat hearts in vivo. In baseline in vitro conditions, the number of MSCs that adhered to CMVE was highly dependent on the flow rate of the superfusing medium but remained significant at venous and capillary shear stress amplitudes. Activation of both CMVE and MSCs with TNF-alpha or IL-1beta before adhesion concentration dependently increased adhesion of MSCs at each studied level of shear stress. Consistently, in vivo, activation of MSCs with TNF-alpha before injection significantly enhanced cardiac homing of MSCs. TNF-alpha-induced adhesion could be completely blocked by pretreating either CMVE or MSCs with anti-VCAM-1 monoclonal antibodies but not by anti-ICAM-1 antibodies. Adhesion of circulating MSCs in the heart appears to be an endothelium-dependent process and is sensitive to modulation by activators of both MSCs and endothelium. Inflammation and the expression of VCAM-1 but not ICAM-1 on both cell types have a regulatory effect on MSC homing in the heart.  相似文献   

9.
刘晶  宋琳  邹伟  诸葛栋  崔占峰 《生物工程学报》2010,26(12):1629-1635
间充质干细胞(Mesenchymal stem cells,MSCs)具有多向分化潜能、免疫抑制能力、来源充足、可避免伦理学争议等优点,使其有望成为种子细胞,应用于临床干细胞移植治疗多种难治性疾病。目前通过生物反应器等方法已能实现MSCs的大规模体外扩增,使体外获取足量移植用MSCs成为可能,但扩增MSCs应用于临床移植前还存在着一个急需解决的问题,即MSCs扩增后的安全性和移植有效性评价,目前国内外对这方面研究尚不系统,未建立起有效评价体系,经检索还未发现有就扩增MSCs有效性和安全性的总结性资料。在全面检索相关文献基础上,就MSCs扩增后临床应用有效性、移植安全性两大方面的研究进展作一综述,希望对今后扩增MSCs临床移植提供参考。  相似文献   

10.
11.
Zhang DZ  Gai LY  Liu HW 《生理学报》2008,60(3):341-347
本文旨在探讨脂肪干细胞(adipose-derived stem cells, ASCs)和骨髓间充质干细胞(mesenchymal stem cells, MSCs)在组织含量、体外培养和诱导分化为心肌细胞方面的差别.ASCs从新西兰白兔皮下脂肪组织提取,MSCs从大鼠四肢长骨骨髓提取,体外培养扩增,免疫细胞学方法鉴定.采用细胞集落形成法检测组织中干细胞的含量.将不同代的干细胞用不同浓度的5-氮胞苷诱导,观察其形态变化,免疫细胞化学方法检测诱导后细胞是否转化为心肌细胞.结果显示,体外培养的ASCs呈短梭形,分布均匀,生长迅速,细胞形态单一、稳定.MSCs原代生长非常缓慢,呈簇生长,细胞纯度偏低,容易混杂其它细胞类型,传代细胞容易分化和老化.脂肪组织中ASCs含量显著高于骨髓中MSCs含量,且前者含量受年龄影响小.5-氮胞苷诱导ASCs分化为心肌细胞的有效浓度为6~9μmol/L,而MSCs在3~15μmol/L 5-氮胞苷诱导下可见心肌细胞形成.ASCs诱导分化的心肌细胞呈球形细胞团,MSCs分化的心肌细胞呈条形或棒状,其心肌细胞分化率低于ASCs.幼年动物MSCs的组织含量和心肌细胞分化率均高于老年动物,而ASCs受动物年龄影响较小.结果表明,ASCs在组织含量、细胞纯度、生长速度和心肌细胞分化率等方面均明显优于骨髓MSCs,在心肌细胞再生方面较MSCs具有更大的优势.  相似文献   

12.
Bone marrow–derived stromal cells or mesenchymal stromal cells (BMSCs or MSCs, as we will call them in this work) are multipotent progenitor cells that can differentiate into osteoblasts, adipocytes and chondrocytes. In addition, MSCs have been shown to modulate the function of a variety of immune cells. Donor age has been shown to affect the regenerative potential, differentiation, proliferation and anti-inflammatory potency of MSCs; however, the impact of donor age on their immunosuppressive activity is unknown. In this study, we evaluated the ability of MSCs derived from very young children and adults on T-cell suppression and cytokine secretion by monocytes/macrophages. MSCs were obtained from extra digits of children between 10 and 21 months and adults between 28 and 64 years of age. We studied cell surface marker expression, doubling time, lineage differentiation potential and immunosuppressive function of the MSCs. Young MSCs double more quickly and differentiate into bone and fat cells more efficiently than those from older donors. They also form more and dense colonies of fibroblasts (colony forming unit–fibroblast [CFU-F]). MSCs from both young and adult subjects suppressed T-cell proliferation in a mitogen-induced assay at 1:3 and 1:30 ratios. At a 1:30 ratio, however, MSCs from adults did not, but MSCs from infants did suppress T-cell proliferation. In the mixed lymphocyte reaction assay, MSCs from infants produced similar levels of suppression at all three MSC/T-cell ratios, but adult MSCs only inhibited T-cell proliferation at a 1:3 ratio. Cytokine analyses of co-cultures of MSCs and macrophages showed that both adult and young MSCs suppress tumor necrosis factor alpha (TNF-α) and induce interleukin-10 (IL-10) production in macrophage co-culture assay in a similar manner. Overall, this work shows that developing MSCs display a higher level of immunosuppression than mature MSCs.  相似文献   

13.
Recent studies have demonstrated the existence of a subset of cells in human bone marrow capable of differentiating along multiple mesenchymal lineages. Not only do these mesenchymal stem cells (MSCs) possess multilineage developmental potential, but they may be cultured ex vivo for many passages without overt expression of a differentiated phenotype. The goals of the current study were to determine the growth kinetics, self-renewing capacity, and the osteogenic potential of purified MSCs during extensive subcultivation and following cryopreservation. Primary cultures of MSCs were established from normal iliac crest bone marrow aspirates, an aliquot was cryopreserved and thawed, and then both frozen and unfrozen populations were subcultivated in parallel for as many as 15 passages. Cells derived from each passage were assayed for their kinetics of growth and their osteogenic potential in response to an osteoinductive medium containing dexamethasone. Spindle-shaped human MSCs in primary culture exhibit a lag phase of growth, followed by a log phase, finally resulting in a growth plateau state. Passaged cultures proceed through the same stages, however, the rate of growth in log phase and the final number of cells after a fixed period in culture diminishes as a function of continued passaging. The average number of population doublings for marrow-derived adult human MSCs was determined to be 38 ± 4, at which time the cells finally became very broad and flattened before degenerating. The osteogenic potential of cells was conserved throughout every passage as evidenced by the significant increase in APase activity and formation of mineralized nodular aggregates. Furthermore, the process of cryopreserving and thawing the cells had no effect on either their growth or osteogenic differentiation. Importantly, these studies demonstrate that replicative senescence of MSCs is not a state of terminal differentiation since these cells remain capable of progressing through the osteogenic lineage. The use of population doubling potential as a measure of biological age suggests that MSCs are intermediately between embryonic and adult tissues, and as such, may provide an in situ source for mesenchymal progenitor cells throughout an adult's lifetime. J. Cell. Biochem. 64:278–294. © 1997 Wiley-Liss, Inc.  相似文献   

14.
The characteristics of anterior cruciate ligament (ACL)-derived mesenchymal stem cells (MSCs), such as proportion and multilineage potential, can be affected by donor age. However, the qualitative and quantitative features of ACL MSCs isolated from younger and older individuals have not yet been compared directly. This study assessed the phenotypic and functional differences in ACL-MSCs isolated from younger and older donors and evaluated the correlation between ACL-MSC proportion and donor age. Torn ACL remnants were harvested from 36 patients undergoing ACL reconstruction (young: 29.67 ± 10.92 years) and 33 undergoing TKA (old: 67.96 ± 5.22 years) and the proportion of their MSCs were measured. The mean proportion of MSCs was slightly higher in older ACL samples of the TKA group than of the younger ACL reconstruction group (19.69 ± 8.57% vs. 15.33 ± 7.49%, p = 0.024), but the proportions of MSCs at passages 1 and 2 were similar. MSCs from both groups possessed comparable multilineage potentiality, as they could be differentiated into adipocytes, osteocytes, and chondrocytes at similar level. No significant correlations were observed between patient age and MSC proportions at passages 0–2 or between age and MSC proportion in both the ACL reconstruction and TKA groups. Multiple linear regression analysis found no significant predictor of MSC proportion including donor age for each passage. Microarray analysis identified several genes that were differentially regulated in ACL-MSCs from old TKA patients compared to young ACL reconstruction patients. Genes of interest encode components of the extracellular matrix (ECM) and may thus play a crucial role in modulating tissue homeostasis, remodeling, and repair in response to damage or disease. In conclusion, the proportion of freshly isolated ACL-MSC was higher in elderly TKA patients than in younger patients with ACL tears, but their phenotypic and multilineage potential were comparable.  相似文献   

15.
Clinical trials using human Mesenchymal Stem Cells (MSCs) have shown promising results in the treatment of various diseases. Different tissue sources, such as bone marrow, adipose tissue, dental pulp and umbilical cord, are being routinely used in regenerative medicine. MSCs are known to reduce increased oxidative stress levels in pathophysiological conditions. Differences in the ability of MSCs from different donors and tissues to ameliorate oxidative damage have not been reported yet. In this study, for the first time, we investigated the differences in the reactive oxygen species (ROS) reduction abilities of tissue-specific MSCs to mitigate cellular damage in oxidative stress. Hepatic Stellate cells (LX-2) and cardiomyocytes were treated with Antimycin A (AMA) to induce oxidative stress and tissue specific MSCs were co-cultured to study the reduction in ROS levels. We found that both donor’s age and source of tissue affected the ability of MSCs to reduce increased ROS levels in damaged cells. In addition, the abilities of same MSCs differed in LX-2 and cardiomyocytes in terms of magnitude of reduction of ROS, suggesting that the type of recipient cells should be kept in consideration when using MSCs in regenerative medicine for treatment purposes.  相似文献   

16.
Background aimsMesenchymal stromal cells (MSCs) have the ability to self-renew and differentiate into various cell types. Their plasticity and easy availability make them promising candidates for regenerative medicine. However, for successful clinical application, MSCs need to be expanded under a Good Manufacturing Practices-compliant system to obtain a large quantity of these cells. Although the viability and potency of these in vitro-expanded MSCs need to be maintained during preparation and transportation before transplantation, these characteristics have not thoroughly been examined. Our goal in this study was to standardize MSC preparation and storage before their clinical application to ensure reproducible quality and potency for their clinically intended purpose.MethodsWe examined the viability, self-renewal capacity and differentiation capability of MSCs on short-term in vitro storage in saline or dextrose solution at 4°C and room temperature.ResultsMSCs harvested and suspended in saline for 1–2 h showed >90% viability regardless of storage temperature. However, when cells were stored for >2 h in saline, their viability decreased gradually over time. The viability of cells in dextrose deteriorated rapidly. MSCs lost colony-forming unit and differentiation capacities rapidly as storage time increased. Collectively, we found that a storage period >2 h resulted in a significant decrease in cell viability, cell proliferation capacity and differentiation potency.ConclusionsStorage of culture-harvested MSCs for >2 h is likely to result in suboptimal MSC-mediated tissue regeneration because of decreased cell viability and differentiation capacity.  相似文献   

17.
Mesenchymal stromal cells (MSCs) are considered to be an excellent source in regenerative medicine. They contain several cell subtypes, including multipotent stem cells. MSCs are of particular interest as they are currently being tested using cell and gene therapies for a number of human diseases. They represent a rare population in tissues; for this reason, they require, before being transplanted, an in vitro amplification. This process may induce replicative senescence, thus affecting differentiation and proliferative capacities. Increasing evidence suggests that MSCs from fetal tissues are significantly more plastic and grow faster than MSCs from bone marrow. Here, we compare amniotic fluid mesenchymal stromal cells (AF‐MSCs) and bone marrow mesenchymal stromal cells (BM‐MSCs) in terms of cell proliferation, surface markers, multidifferentiation potential, senescence, and DNA repair capacity. Our study shows that AF‐MSCs are less prone to senescence with respect to BM‐MSCs. Moreover, both cell models activate the same repair system after DNA damage, but AF‐MSCs are able to return to the basal condition more efficiently with respect to BM‐MSCs. Indeed, AF‐MSCs are better able to cope with genotoxic stress that may occur either during in vitro cultivation or following transplantation in patients. Our findings suggest that AF‐MSCs may represent a valid alternative to BM‐MSCs in regenerative medicine, and, of great relevance, the investigation of the mechanisms involved in DNA repair capacity of both AF‐MSCs and BM‐MSCs may pave the way to their rational use in the medical field.  相似文献   

18.
Myocardial infarction (MI) is one of the leading causes of death worldwide and Mesenchymal Stem Cells (MSCs) transplantation has been considered a promising therapy. Recently, it was reported that the therapeutic effectiveness of MSCs is dependent on the age of the donor, yet the underlying mechanism has not been thoroughly investigated. This study was designed to investigate whether this impaired therapeutic potency is caused by an increased susceptivity of MSCs from old donors to reactive oxygen species (ROS). The MSCs were isolated from the subcutaneous inguinal region of young (8–10 weeks) and old (18 months) Sprague–Dawley (SD) rats. By exposing these MSCs to H2O2, we found that the adhesion of MSCs from old donors was damaged more severely. Specifically, decreased expression of integrin and reduced phosphorylation of focal adhesion kinase Src and FAK were observed. Furthemore, H2O2 triggered an increased apoptosis of MSCs from old donors. To study the viability and therapeutic potency of MSCs from young and old donors in vivo, these MSCs were transplanted into acute MI model rats. We observed a more rapidly decreased survival rate of the old MSCs in the infarct region, which may be caused by their increased susceptivity to the micro-environmental ROS, as transplantation of the old MSCs with N-acetyl-L-cysteine (NAC), a ROS scavenger, protected them. The low viability of engrafted old MSCs consequently impaired their therapeutic effectiveness, judging by the histology and function of heart. Our study may help to understand the mechanism of MSCs-host interaction during MI, as well as shed light on the design of therapeutic strategy in clinic.  相似文献   

19.
ObjectivesSevere aplastic anemia is characterized by a hypocellular bone marrow and peripheral cytopenia. Mesenchymal stem cells (MSCs) play a crucial role in haematopoietic stem cells (HSCs) development and the development of microenvironment suitable for hematopoiesis. Molecular characterization of telomere maintenance pathway and gene expression profiling of MSCs can be important for the therapeutic interventions among paediatric aplastic anaemia patients.MethodsThe study involved paediatric aplastic anaemia patients (n = 10) and age matched paediatric healthy donors (n = 8). Peripheral blood samples were collected from the individuals. Average leucocyte telomere length and gene expression of the telomere maintenance genes were determined by quantitative real time PCR. Microarray based gene expression profiles (GSE33812) of MSCs for five paediatric aplastic anaemia patients were analyzed compared to five healthy controls and the data was downloaded from the GEO database.ResultsThe telomere length was significantly shorter among paediatric AA patients compared to age matched healthy donors. Interestingly, one subgroup (n = 2) of paediatric AA patients has moderate telomere length comparable to age matched healthy donors. Based on the gene expression analysis of telomere maintenance pathway, TERF2 was significantly downregulated among paediatric patients with shorter telomere length but not among paediatric patients with moderate telomere length. Gene expression profiling of MSCs revealed three differentially expressed genes (GAS2L3, MK167 and TMSB15A) among the patients and was associated with therapeutic outcome.ConclusionTelomere length estimation and gene expression patterns of the MSCs and telomere length maintenance pathway may serve as a potential biomarker and could be associated with therapeutic choice of paediatric aplastic anaemia patients.  相似文献   

20.
Mesenchymal stromal cells (MSCs) have the potential to differentiate into a variety of mature cell types and are a promising source of regenerative medicine. The success of regenerative medicine using MSCs strongly depends on their differentiation potential. In this study, we sought to identify marker genes for predicting the osteogenic differentiation potential by comparing ilium MSC and fibroblast samples. We measured the mRNA levels of 95 candidate genes in nine ilium MSC and four fibroblast samples before osteogenic induction, and compared them with alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation after induction. We identified 17 genes whose mRNA expression levels positively correlated with ALP activity. The chondrogenic and adipogenic differentiation potentials of jaw MSCs are much lower than those of ilium MSCs, although the osteogenic differentiation potential of jaw MSCs is comparable with that of ilium MSCs. To select markers suitable for predicting the osteogenic differentiation potential, we compared the mRNA levels of the 17 genes in ilium MSCs with those in jaw MSCs. The levels of 7 out of the 17 genes were not substantially different between the jaw and ilium MSCs, while the remaining 10 genes were expressed at significantly lower levels in jaw MSCs than in ilium MSCs. The mRNA levels of the seven similarly expressed genes were also compared with those in fibroblasts, which have little or no osteogenic differentiation potential. Among the seven genes, the mRNA levels of IGF1 and SRGN in all MSCs examined were higher than those in any of the fibroblasts. These results suggest that measuring the mRNA levels of IGF1 and SRGN before osteogenic induction will provide useful information for selecting competent MSCs for regenerative medicine, although the effectiveness of the markers is needed to be confirmed using a large number of MSCs, which have various levels of osteogenic differentiation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号