首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
讨论了一类Chemostat系统中,单一食饵喂养且具有三个捕食者的食物链模型,当微生物的增长率p(s)为有代谢功能p(0)≠0时持续生存问题,当系统满足一定条件时,食物链模型是持久的。  相似文献   

2.
Methanogenic degradation of acetone by an enrichment culture   总被引:7,自引:0,他引:7  
An anaerobic enrichment culture degraded 1 mol of acetone to 2 mol of methane and 1 mol of carbon dioxide. Two microorganisms were involved in this process, a filament-forming rod similar to Methanotrix sp. and an unknown rod with round to slightly pointed ends. Both organisms formed aggregates up to 300 m in diameter. No fluorescing bacteria were observed indicating that hydrogen or formate-utilizing methanogens are not involved in this process. Acetate was utilized in this culture by the Methanothrix sp. Inhibition of methanogenesis by bromoethanesulfonic acid or acetylene decreased the acetone degradation rate drastically and led to the formation of 2 mol acetate per mol of acetone. Streptomycin completely inhibited acetone degradation, and neither acetate nor methane was formed. 14CO2 was incorporated exclusively into the C-1 atom of acetate indicating that acetone is degraded via carboxylation to an acetoacetate residue. It is concluded that acetone is degraded by a coculture of an eubacterium and an acetate-utilizing methanogen and that acetate is the only intermediate transferred between both. The energetical problems of the eubacterium converting acetone to acetate are discussed.  相似文献   

3.
研究了环境污染下脉冲输入恒化器模型的动力学性质,得到了微生物灭绝周期解的全局稳定性和系统的持续生存.  相似文献   

4.
From anaerobic freshwater enrichment cultures with 3-hydroxybenzoate as sole substrate, a slightly curved rod-shaped bacterium was isolated in coculture with Desulfovibrio vulgaris as hydrogen scavenger. The new isolate degraded only 3-hydroxybenzoate or benzoate, and depended on syntrophic cooperation with a hydrogenoxidizing methanogen or sulfate reducer. 3-Hydroxybenzoate was degraded via reductive dehydroxylation to benzoate. With 2-hydroxybenzoate (salicylate), short coccoid rods were enriched from anaerobic freshwater mud samples, and were isolated in defined coculture with D. vulgaris. This isolate also fermented 3-hydroxybenzoate or benzoate in obligate syntrophy with a hydrogen-oxidizing anaerobe. The new isolates were both Gram-negative, non-sporeforming strict anaerobes. They fermented hydroxybenzoate or benzoate to acetate, CO2, and, presumably, hydrogen which was oxidized by the syntrophic partner organism. With hydroxybenzoates, but not with benzoate, Acetobacterium woodii could also serve as syntrophic partner. Other substrates such as sugars, alcohols, fatty or amino acids were not fermented. External electron acceptors such as sulfate, sulfite, nitrate, or fumarate were not reduced. In enrichment cultures with 4-hydroxybenzoate, decarboxylation to phenol was the initial step in degradation which finally led to acetate, methane and CO2.  相似文献   

5.
Three different defined cocultures of glycolatedegrading strictly anaerobic bacteria were isolated from enrichment cultures inoculated with freshwater sediment samples. Each culture contained a primary fermenting bacterium which used only glycolate as growth substrate. These cells were gram-positive, formed terminal oval spores, and did not contain cytochromes. Growth with glycolate was possible only in coculture with either a homoacetogenic bacterium or a hydrogen-utilizing methanogenic bacterium; the overall fermentation balance was either 4 glycolate 3 acetate + 2CO2, or 4 glycolate 3 CH4+5 CO2. These transformations indicate that glycolate was converted by the primary fermenting bacterium entirely to CO2 and reducing equivalents which were transferred to the partner organisms, probably through interspecies hydrogen transfer. The key enzymes of fermentative glycolate degradation were identified in cell-free extracts. An acetyl-CoA and ADP-dependent glyoxylate-converting enzyme activity, malic enzyme, pyruvate synthase, and methyl viologen-dependent hydrogenase were found at comparably high activities suggesting that these bacteria oxidize glycolate through a new pathway via malyl-CoA, and that ATP is synthesized by substrate-level phosphorylation, in a similar manner as found in a recently isolated glyoxylatefermenting anaerobe.  相似文献   

6.
In a chemostat, transient oscillations in cell number density are often experimentally observed during cell growth. The aim of this paper is to propose a simple autonomous model which is able to generate these oscillations, and to investigate it analytically. Our point of view is based on a simplification of the cell cycle in which there are two states (mature and immature) with the transfer between the two dependent on the available resources. We use the mathematical global properties of competitive differential systems to prove the existence of a limit cycle. A comparison between our model and a more complex model consisting of partial differential equations is made with the help of numerical simulations, giving qualitatively similar results.  相似文献   

7.
Abstract In a mineral medium containing sulfate as terminal electron acceptor, the sulfate-reducing bacterium Desulfovibrio alcoholovorans oxidized stoichiometrically 1 mol glycerol to 1 mol acetate and 1 mol 1,3-propanediol to 1 mol acetate with the concomitant reduction of 0.75 and 1 mol sulfate, respectively; 1 mol 1,2-propanediol was degraded to 0.8 mol acetate and 0.1 mol proprionate, with the reduction of approximately 1 mol sulfate. The maximum specific growth rates (μmax in h−1) were 0.22, 0.086 and 0.09 with glycerol, 1,3-propanediol and 1,2-propanediol, respectively. The growth yields were 12.7 g, 11.1 g and 7.2 g dry weight/mol 1,3-propanediol, glycerol and 1,2-propanediol degraded, respectively. The growth yields and maximum specific growth rates of the H2-transferring associations were also calculated. In the absense of sulfate, all these reduced substrates were degraded to acids and methane when D. alcoholovorans was cocultured with Methanospirillum hungatei . Changes in the metabolic pathway were observed in the degradation of 1,2- and 1,3-propanediol. The metabolic efficiency of D. alcoholovorans to degrade glycerol, 1.2- and 1,3-propanediol is discussed.  相似文献   

8.
Abstract Thermophilic (55°C) protein (peptone) degradation was studied in steady state, laboratory-scale reactors. Peptone was easily hydrolysed to amino acids under methanogenic conditions, and all amino acids were completely degraded to volatile fatty acids, carbon dioxide and ammonium. Under these conditions, amino acids known to be oxidatively deaminated were degraded more slowly than the other amino acids. Inhibition of methanogenesis by 2-bromoethanesulfonic acid led to the accumulation of hydrogen in the gas phase and to the immediate inhibition of both protein hydrolysis and the degradation of amino acids that are preferentially oxidatively deaminated. These effects resulted in lower concentrations of all volatile fatty acids except for butyrate and caproate, which increased in concentration. Interspecies hydrogen transfer appeared to be necessary for the complete degradation of alanine, phenylalanine, methionine, valine, leucine and isoleucine. α-Aminobutyrate also accumulated when methanogenesis was inhibited.  相似文献   

9.
Three strains of new strictly anaerobic, Grampositive, non-sporeforming bacteria were isolated from various anoxic sediment samples with putrescine as sole carbon and energy source. Optimal growth in carbonate-buffered defined medium occurred at 37°C at pH 7.2–7.6. The DNA base ratio of strain NorPut1 was 29.6±1 mol% guanine plus cytosine. In addition to a surface layer and the peptidoglycan layer, the cell wall contained a second innermost layer with a periodic arrangement of subunits. All strains fermented putrescine to acetate, butyrate, and molecular hydrogen; the latter originated from both oxidative putrescine deamination and 4-aminobutyraldehyde oxidation. In defined mixed cultures with methanogens or homoacetogenic bacteria, methane or additional acetate were formed due to interspecies hydrogen transfer. Also 4-aminobutyrate and 4-hydroxybutyrate were fermented to acetate and butyrate, but no hydrogen was released from these substrates. No sugars, organic acids, other primary amines or amino acids were used as substrates. Neither sulfate, thiosulfate, sulfur, nitrate nor fumarate was reduced. Most of the enzymes involved in putrescine degradation could be demonstrated in cell-free extracts. A pathway of putrescine fermentation via 4-aminobutyrate and crotonyl-CoA with subsequent dismutation to acetate and butyrate is suggested.  相似文献   

10.
In this paper we study a mathematical model of competition between two species of microorganisms for a single limiting nutrient in a laboratory device called a gradostat. A gradostat consists of several (we consider only two) chemostats (CSTR's) connected together so that material can flow between the vessels in such a way that a nutrient gradient is established. Our model is a slightly modified version of one considered recently by Jäger et al. [3], in that the rate of exchange of material between the two vessels (the communication rate) is allowed to differ from the dilution rate. The outcome of competition turns out to be surprisingly sensitive to variation of the communication rate. We identify several coexistence regimes in parameter space and describe a method for obtaining operating diagrams for given pairs of competing microorganisms.Research supported in part by NSF Grant DMS 8521605  相似文献   

11.
Abstract A defined 3-chlorobenzoate-degrading methanogenic consortium was constructed by recombining key organisms isolated from a 3-chlorobenzoate-degrading methanogenic sludge enrichment. The organisms comprise a three-tiered food chain which includes: (1) reductive dechlorination of 3-chlorobenzoate; (2) oxidation of benzoate to acetate, H2 and CO2; (3) removal of H2 plus CO2 by conversion into methane. The defined consortium, consisting of a dechlorinating organism (DCB-1), a benzoate degrader (BZ-1) and a lithotrophic methanogen ( Methanospirillum strain PM-1) grew well in a basal salts medium supplemented with 3-chlorobenzoate (3.2 mM) as the sole energy source. The chlorine released from the aromatic ringe was recovered in stoichiometric amounts as the chloride ion. The reducing power required for reductive dechlorination was obtained from the hydrogen produced in the acetogenic oxidation of benzoate. One-third of the benzoate-derived hydrogen was recycled via the reductive dechlorination of 3-chlorobenzoate, indicating that the consortium operated as a food web rather than a food chain.  相似文献   

12.
Abstract The products of anaerobic and micro-aerobic (0.8% O2) metabolism of the sapropelic ciliate Trimyema compressum strain N were studied. Under anaerobic conditions ethanol was formed in large amounts representing 44% of the total carbon excreted. Acetate, lactate, formate, CO2 and H2 were minor products, while succinate was formed in hardly detectable amounts. Under micro-aerobic conditions O2 was consumed, CO2 and formate were produced as major end products and no H2, ethanol and succinate were formed.  相似文献   

13.
We show that the chemostat model with two species having different but close break-even concentrations exhibits a slow-fast dynamics. Considering small perturbations about the dilution rate for which break-even concentrations are identical, we use the Fenichel theory to show the coexistence of species for large times. Then we determine the reduced dynamics, which is non-trivial and characterized by the slopes of the growth functions about their break-even concentrations.  相似文献   

14.
The effects of toxicants on naturally stable two-species communities are studied. Persistence-extinction thresholds are given for populations in the toxicant stressed Lotka-Volterra model of two interacting species. The threshold results are expressed in terms of relationships involving the population intrinsic growth rates, dose-response parameters, and interaction rates.Research supported by the fund of Chinese Natural Science  相似文献   

15.
From a methanogenic fixed-bed reactor fed with hydroquinone as sole energy and carbon source, a rodshaped bacterium was isolated in pure culture which could degrade hydroquinone and gentisate (2,5-dihydroxybenzoate). In syntrophic coculture with either Desulfovibrio vulgaris or Methanospirillum hungatei, also benzoate could be degraded. Other substrates such as sugars, fatty acids, alcohols, and cyclohexane derivatives were not degraded. Sulfate, sulfite, or nitrate were not used as external electron acceptor. The isolate was a Gram-negative, non-motile, nonsporeforming strict anaerobe; the guanine-plus-cytosine content of the DNA was 53.2±1.0 mol%. In pure culture, hydroquinone was degraded to acetate and benzoate, probably via an intermediate carboxylation. In syntrophic mixed cultures, all three substrates were converted completely to acetate. Phenol was never detected as a fermentation product.  相似文献   

16.
During synthrophic growth of Hydrogenophaga palleronii (strain S1) and Agrobacterium radiobacter (strain S2) with 4-aminobenzene sulfonate (4ABS) only strain S1 desaminates 4ABS by regioselective 3,4-dioxygenation. The major part of the metabolite catechol-4-sulfonate (4CS) is excreted and further metabolized by strain S2. Although both organisms harbour activities of protocatechuate pathways assimilation of the structural analog 4CS requires first of all enzyme activities with broader substrate specificity: protocatechuate 3,4-dioxygenase and carboxymuconate cycloisomerase activities were identified which in addition to the natural substrates also convert 4CS requires first of all enzyme activities with Carboxymethyl-4-sulfobut-2-en-4-olide (4SL) was identifed as a metabolite. Its further metabolism requires a desulfonating enzyme which eliminates sulfite from (4SL) and generates maleylacetate. Convergence with the 3-oxoadipate pathway is catalyzed by a maleyl acetate reductase, which was identified in cell-free extracts of both organisms S1 and S2. Characteristically, only strain S1 can oxidize sulfite and thus contributes to the interdependence of the two bacteria during growth with 4ABS.  相似文献   

17.
Alginate production by Azotobacter vinelandii growing in chemostat cultures was evaluated under different O2 transfer rates (OTR). As a result of modifying the culture’s agitation rate from 300 to 500 rpm, the OTR increased from 9 to 15.1 mmol l−1 h−1 and a slight variation in the alginate production (1.7–2.2 g l−1) was observed. At a constant growth rate (0.1 h−1), the mean molecular mass of the alginate was strongly influenced by changes in the OTR, varying from 860 to 1,690 kDa. These results support a possible relationship between alginate polymerization-depolymerization process and the O2 uptake rate.  相似文献   

18.
Certain bacteria develop iron chelation mechanisms that allow them to scavenge dissolved iron from the environment and to make it unavailable to competitors. This is achieved by producing siderophores that bind the iron which is later liberated internally in the cell. Under conditions of iron limitation, siderophore producing bacteria have therefore an antagonistic growth advantage over other species. This has been observed in particular in agricultural and aquacultural systems, as well as in food microbiology. We investigate here the possibility of a probiotic biocontrol strategy to eradicate a well established, often pathogenic, non-chelating population by supplementing the system with generally regarded as safe siderophore producing bacteria. Set in a chemostat setup, our modeling and simulation studies suggest that this is indeed possible in a finite time treatment.  相似文献   

19.
Dating of the human-ape splitting by a molecular clock of mitochondrial DNA   总被引:64,自引:0,他引:64  
Summary A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized leastsquares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3±11.7, 13.3±1.5, 10.9±1.2, 3.7±0.6, and 2.7±0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the bipedal creatureAustralopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a protochimpanzee after the former had developed bipedalism.  相似文献   

20.
We present a simple mathematical model with six compartments for the interaction between HIV and TB epidemics. Using data from a township near Cape Town, South Africa, where the prevalence of HIV is above 20% and where the TB notification rate is close to 2,000 per 100,000 per year, we estimate some of the model parameters and study how various control measures might change the course of these epidemics. Condom promotion, increased TB detection and TB preventive therapy have a clear positive effect. The impact of antiretroviral therapy on the incidence of HIV is unclear and depends on the extent to which it reduces sexual transmission. However, our analysis suggests that it will greatly reduce the TB notification rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号