首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.  相似文献   

2.
3.
1. The compound trans-1,4 bis-(2-dichlorobenzylaminomethyl)cyclohexane dihydrochloride (AY9944) blocks cholesterol synthesis at a late stage. This leads to a decrease in cholesterol and accumulation of cholesta-5,7-diene-3-beta-ol (7-dehydrocholesterol) in tissues and plasma. 2. The effect of AY9944 on bile salt synthesis in rat liver was studied. The synthesis of conjugated cholic and chenodeoxycholic acids was measured in hepatocytes isolated from rats 2 h, 24 h and 48 h after administration of a single oral dose of AY9944. Production of the two bile salts was inhibited by 70-80% in hepatocytes from AY9944-treated as compared to untreated animals. 3. When AY9944 was added to the incubation medium in vitro of hepatocytes prepared from untreated rats the synthesis of conjugated cholic and chenodeoxycholic acids was not inhibited during the first hour of incubation, probably because of the presence of endogenous cholesterol. However when hepatocytes from untreated rats were incubated with AY9944 for periods of 2 h or longer, bile salt production was decreased markedly. 4. Bile salt synthesis is stimulated when rats are subjected to total biliary drainage for 24 h. The effect of AY9944 on this stimulation was studied. The content of conjugated cholic and chenodeoxycholic acid in the bile was measured as an indicator of bile salt synthesis. 5. In control animals the rate of secretion of biliary bile salts began to increase after about 24 h of total biliary drainage and reached a maximum after approximately 36 h. A single oral dose of AY9944 given 2 h after the start of total biliary drainage delayed and reduced this response. 6. The results show that inhibition of cholesterol synthesis by AY9944 resulting in the replacement of cholesterol by 7-dehydrocholesterol decreases but does not completely prevent bile salt synthesis.  相似文献   

4.
Smad4 is required for the normal organization of the cartilage growth plate   总被引:6,自引:0,他引:6  
Zhang J  Tan X  Li W  Wang Y  Wang J  Cheng X  Yang X 《Developmental biology》2005,284(2):311-322
Smad4 is the central intracellular mediator of transforming growth factor-beta (TGF-beta) signals. To study the role of Smad4 in skeletal development, we introduced a conditional mutation of the gene in chondrocytes using Cre--loxP system. We showed that Smad4 was expressed strongly in prehypertrophic and hypertrophic chondrocytes. The abrogation of Smad4 in chondrocytes resulted in dwarfism with a severely disorganized growth plate characterized by expanded resting zone of chondrocytes, reduced chondrocyte proliferation, accelerated hypertrophic differentiation, increased apoptosis and ectopic bone collars in perichondrium. Meanwhile, Smad4 mutant mice exhibited decreased expression of molecules in Indian hedgehog/parathyroid hormone-related protein (Ihh/PTHrP) signaling. The cultured mutant metatarsal bones failed to response to TGF-beta1, while the hypertrophic differentiation was largely inhibited by Sonic hedgehog (Shh). This indicated that Ihh/PTHrP inhibited the hypertrophic differentiation of chondrocytes independent of the Smad4-mediated TGF-beta signals. All these data provided the first genetic evidence demonstrating that Smad4-mediated TGF-beta signals inhibit the chondrocyte hypertrophic differentiation, and are required for maintaining the normal organization of chondrocytes in the growth plate.  相似文献   

5.
J Wang  J Zhou  C A Bondy 《FASEB journal》1999,13(14):1985-1990
Longitudinal bone growth, and hence stature, are functions of growth plate chondrocyte proliferation and hypertrophy. Insulin-like growth factor 1 (Igf1) is reputed to augment longitudinal bone growth by stimulating growth plate chondrocyte proliferation. In this study, however, we demonstrate that chondrocyte numbers and proliferation are normal in Igf1 null mice despite a 35% reduction in the rate of long bone growth. Igf1 null hypertrophic chondrocytes differentiate normally in terms of expressing specialized proteins such as collagen X and alkaline phosphatase, but are smaller than wild-type at all levels of the hypertrophic zone. The terminal hypertrophic chondrocytes, which form the scaffold on which long bone growth extends, are reduced in linear dimension by 30% in Igf1 null mice, accounting for most of their decreased longitudinal growth. The expression of the insulin-sensitive glucose transporter, GLUT4, is significantly decreased and the insulin-regulated enzyme glycogen synthase kinase 3beta (GSK3) is hypo-phosphorylated in Igf1 null chondrocytes. Glycogen levels were significantly decreased and ribosomal RNA levels were reduced by almost 75% in Igf1 null chondrocytes. These data suggest that Igf1 promotes longitudinal bone growth by 'insulin-like' anabolic actions which augment chondrocyte hypertrophy.  相似文献   

6.
7.
8.
9.
In the chronic bile fistula rat, the administration of a bolus dose of mevinolinic acid, an inhibitor of HMG-CoA reductase, was followed by rapid down-regulation of cholesterol 7 alpha-hydroxylase activity and a decrease in bile acid synthesis. These observations suggested that either newly synthesized cholesterol or some other metabolite of mevalonate may be involved in the regulation of bile acid synthesis. In order to distinguish between these two alternatives, we carried out experiments in which cholesterol synthesis was blocked by AY9944, a compound that inhibits the conversion of 7-dehydrocholesterol to cholesterol, a last step in the cholesterol biosynthesis pathway. Rats underwent biliary diversion for 72 h at which time they were given intravenously either a bolus dose of AY9944 (1 mg/kg) or control vehicle. At 0 (pre-treatment control), 0.5, 1.5, and 3 h post bolus, livers were harvested and specific activities of cholesterol 7 alpha-hydroxylase were determined. At 1.5, 3, and 6 h post bolus, AY9944 inhibited bile acid synthesis by 19 +/- 6%, 40 +/- 4%, and 41 +/- 6%, respectively, as compared to pretreatment baseline. Cholesterol 7 alpha-hydroxylase activity determined at 0.5, 1.5, and 3 h was decreased by 44 +/- 6%, 44 +/- 2%, and 36 +/- 2%, respectively, as compared to the control value. In in vitro experiments using microsomes from livers of control bile fistula rats, the addition of AY9944 (up to 100 microM) failed to inhibit cholesterol 7 alpha-hydroxylase activity. The results of this study demonstrate that, in the chronic bile fistula rat, acute inhibition of cholesterol synthesis at either early or late steps leads to a rapid down-regulation of cholesterol 7 alpha-hydroxylase activity and decrease in bile acid synthesis.  相似文献   

10.
AY 9944 [trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride] is an amphiphilic cationic molecule. This chemical is an established inhibitor of cholesterol synthesis and is teratogenic in rats. The mechanisms of this teratogenicity remain to be clarified. This study used cultured rat whole embryos to ascertain whether AY 9944 had a direct effect on embryos, or whether its action was indirect, via the maternal cholesterol metabolism. Four experimental conditions were investigated: (A) controls; (B) 10 day untreated embryos were cultured in serum of treated rats; (C) 10 day untreated embryos were cultured in serum containing added AY 9944 (0-1,000 micrograms/ml); and (D) 10 day embryos from females treated on day 4 of gestation were cultured in normal serum. In group B there was no growth retardation; some slight nonspecific abnormalities were not significant. In group C, direct addition of AY 9944 to culture medium retarded growth and differentiation in a dose-dependent manner. No malformation was observed, but histological examinations showed numerous areas of cell necrosis, especially in the CNS. In group D, not only was growth retardation observed, but also characteristic malformations of AY 9944 teratogenesis, including pituitary agenesis. These results show that AY 9944 teratogenicity is initiated prior to day 10.  相似文献   

11.
Proepithelin, a previously unrecognized growth factor in cartilage, has recently emerged as an important regulator for cartilage formation and function. In the present study, we provide several lines of evidences in proepithelin-mediated induction of cell proliferation, differentiation, and apoptosis in the metatarsal growth plate. Proepithelin-mediated stimulation of metatarsal growth and growth plate chondrogenesis was neutralized by pyrrolidine dithiocarbamate, a known NF-κB inhibitor. In rat growth plate chondrocytes, proepithelin induced NF-κB-p65 nuclear translocation, and nuclear NF-κB-p65 initiated its target gene cyclin D1 to regulate chondrocyte functions. The inhibition of NF-κB-p65 expression and activity (by p65 short interfering RNA (siRNA) and pyrrolidine dithiocarbamate, respectively) in chondrocytes reversed the proepithelin-mediated induction of cell proliferation and differentiation and the proepithelin-mediated prevention of cell apoptosis. Moreover, the inhibition of the phosphatidylinositol 3-kinase and Akt abolished the effects of proepithelin on NF-κB activation. Finally, using siRNA and antisense strategies, we demonstrated that endogenously produced proepithelin by chondrocytes is important for chondrocyte growth in serum-deprived conditions. These results support the hypothesis that the induction of NF-κB activity of in growth plate chondrocytes is critical in proepithelin-mediated growth plate chondrogenesis and longitudinal bone growth.  相似文献   

12.
Chondrocyte hypertrophy is an essential process required for endochondral bone formation. Proper regulation of chondrocyte hypertrophy is also required in postnatal cartilage homeostasis. Indian hedgehog (Ihh) and PTHrP signaling play crucial roles in regulating the onset of chondrocyte hypertrophy by forming a negative feedback loop, in which Ihh signaling regulates chondrocyte hypertrophy by controlling PTHrP expression. To understand whether there is a PTHrP-independent role of Ihh signaling in regulating chondrocyte hypertrophy, we have both activated and inactivated Ihh signaling in the absence of PTHrP during endochondral skeletal development. We found that upregulating Ihh signaling in the developing cartilage by treating PTHrP(-/-) limb explants with sonic hedgehog (Shh) protein in vitro, or overexpressing Ihh in the cartilage of PTHrP(-/-) embryos or inactivating patched 1 (Ptch1), a negative regulator of hedgehog (Hh) signaling, accelerated chondrocyte hypertrophy in the PTHrP(-/-) embryos. Conversely, when Hh signaling was blocked by cyclopamine or by removing Smoothened (Smo), a positive regulator of Hh signaling, chondrocyte hypertrophy was delayed in the PTHrP(-/-) embryo. Furthermore, we show that upregulated Hh signaling in the postnatal cartilage led to accelerated chondrocyte hypertrophy during secondary ossification, which in turn caused reduction of joint cartilage. Our results revealed a novel role of Ihh signaling in promoting chondrocyte hypertrophy independently of PTHrP, which is particularly important in postnatal cartilage development and homeostasis. In addition, we found that bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling in the cartilage may both mediate the effect of upregulated Ihh signaling in promoting chondrocyte hypertrophy.  相似文献   

13.
Endochondral ossification is the process of differentiation of cartilaginous into osseous tissue. Parathyroid hormone related protein (PTHrP), Indian hedgehog (Ihh) and vascular endothelial growth factor (VEGF), which are synthesized in different zones of the growth plate, were found to have crucial roles in regulating endochondral ossification. The aim of this study was to evaluate whether the three growth factors PTHrP, Ihh and VEGF, together, could regulate longitudinal growth in a normal human, fetal femur. For this purpose, a one-dimensional finite element (FE) model, incorporating growth factor signaling, was developed of the human, distal, femoral growth plate. It included growth factor synthesis in the relevant zones, their transport and degradation and their effects. Simulations ran from initial hypertrophy in the center of the bone until secondary ossification starts at approximately 3.5 months postnatal. For clarity, we emphasize that no mechanical stresses were considered. The FE model showed a stable growth plate in which the bone growth rate was constant and the number of cells per zone oscillated around an equilibrium. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates resulted, respectively, in more and less cells per zone and in increased and decreased bone growth rates. The FE model correctly reflected the development of a growth plate and the rate of bone growth in the femur. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates reflected growth plate pathologies and growth plates in PTHrP-/- and Ihh-/- mice. The three growth factors, PTHrP, Ihh and VEGF, could potentially together regulate tissue differentiation.  相似文献   

14.
Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology. Birth Defects Research (Part C) 102:74–82, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Endocrine regulation of the growth plate   总被引:8,自引:0,他引:8  
Longitudinal bone growth occurs at the growth plate by endochondral ossification. Within the growth plate, chondrocyte proliferation, hypertrophy, and cartilage matrix secretion result in chondrogenesis. The newly formed cartilage is invaded by blood vessels and bone cells that remodel the newly formed cartilage into bone tissue. This process of longitudinal bone growth is governed by a complex network of endocrine signals, including growth hormone, insulin-like growth factor I, glucocorticoid, thyroid hormone, estrogen, androgen, vitamin D, and leptin. Many of these signals regulate growth plate function, both by acting locally on growth plate chondrocytes and also indirectly by modulating other endocrine signals in the network. Some of the local effects of hormones are mediated by changes in paracrine factors that control chondrocyte proliferation and differentiation. Many human skeletal growth disorders are caused by abnormalities in the endocrine regulation of the growth plate. This review provides an overview of the endocrine signals that regulate longitudinal bone growth, their interactions, and the mechanisms by which they affect growth plate chondrogenesis.  相似文献   

16.
The standard in vivo method to determine rates of brain cholesterol synthesis involves systemic injection of (3)H(2)O and measurement of incorporated radioactivity in sterols. Herein, we describe an alternative method ("enzyme blockade") that obviates the use of radioactivity. The method relies on the ability of AY9944, a potent and relatively selective inhibitor of cholesterol synthesis, to cause the time-dependent accumulation of 7-dehydrocholesterol (DHC), a cholesterol precursor detected with sensitivity and specificity by reverse-phase HPLC-coupled spectrophotometry at 282 nm. To validate the method, adult AY9944-treated and control mice were injected with [(3)H]acetate. After 24 h, most of the radioactivity in brain sterols from treated mice accumulated in DHC, without significantly perturbing overall sterol pathway activity, compared with controls (where cholesterol was the dominant radiolabeled sterol, with no label found in DHC). When adult mice were treated continuously with AY9944, the time-dependent accumulation of DHC in brain was linear (after approximately 8 h) for 3 days. The rate of brain cholesterol synthesis determined by this method ( approximately 30 microg/g/day) closely agrees with that determined by the radioactive method. We also determined the cholesterol synthesis rate in different regions of adult mouse brain, with frontal cortex having the highest rate and cerebellum having the lowest rate.  相似文献   

17.
Chemotherapy often induces bone growth defects in pediatric cancer patients; yet the underlying cellular mechanisms remain unclear and currently no preventative treatments are available. Using an acute chemotherapy model in young rats with the commonly used antimetabolite methotrexate (MTX), this study investigated damaging effects of five once-daily MTX injections and potential protective effects of supplementary treatment with antidote folinic acid (FA) on cellular activities in the tibial growth plate, metaphysis, and bone marrow. MTX suppressed proliferation and induced apoptosis of chondrocytes, and reduced collagen-II expression and growth plate thickness. It reduced production of primary spongiosa bone, volume of secondary spongiosa bone, and proliferation of metaphyseal osteoblasts, preosteoblasts and bone marrow stromal cells, with the cellular activities being most severely damaged on day 9 and returning to or towards near normal levels by day 14. On the other hand, proliferation of marrow pericytes was increased early after MTX treatment and during repair. FA supplementation significantly suppressed chondrocyte apoptosis, preserved chondrocyte proliferation and expression of collagen-II, and attenuated damaging effects on production of calcified cartilage and primary bone. The supplementation also significantly reduced MTX effects on proliferation of metaphyseal osteoblastic cells and of bone marrow stromal cells, and enhanced pericyte proliferation. These observations suggest that FA supplementation effectively attenuates MTX damage on cellular activities in producing calcified cartilage and primary trabecular bone and on pools of osteoblastic cells and marrow stromal cells, and that it enhances proliferation of mesenchymal progenitor cells during bone/bone marrow recovery.  相似文献   

18.
Two sterols of the cholesterol biosynthetic pathway induce resumption of meiosis in mouse oocytes in vitro. The sterols, termed meiosis-activating sterols (MAS), have been isolated from human follicular fluid (FF-MAS, 4,4-dimethyl-5 alpha-cholest-8,14,24-triene-3 beta-ol) and from bull testicular tissue (T-MAS, 4,4-dimethyl-5 alpha-cholest-8,24-diene-3 beta-ol). FF-MAS is the first intermediate in the cholesterol biosynthesis from lanosterol and is converted to T-MAS by sterol delta 14-reductase. An inhibitor of delta 7-reductase and delta 14 reductase, AY9944-A-7, causes cells with a constitutive cholesterol biosynthesis to accumulate FF-MAS and possibly other intermediates between lanosterol and cholesterol. The aim of the present study was to evaluate whether AY9944-A-7 added to cultures of cumulus-oocyte complexes (COC) from mice resulted in accumulation of MAS and meiotic maturation. AY9944-A-7 stimulated dose dependently (5-25 mumol l-1) COC to resume meiosis when cultured for 22 h in alpha minimal essential medium (alpha-MEM) containing 4 mmol hypoxanthine l-1, a natural inhibitor of meiotic maturation. In contrast, naked oocytes were not induced to resume meiosis by AY9944-A-7. When cumulus cells were separated from their oocytes and co-cultured, AY9944-A-7 did not affect resumption of meiosis, indicating that intact oocyte-cumulus cell connections are important for AY9944-A-7 to exert its effect on meiosis. Cultures of COC with 10 mumol AY9944-A-7 l-1 in the presence of [3H]mevalonic acid, a natural precursor for steroid synthesis, resulted in accumulation of labelled FF-MAS, which had an 11-fold greater amount of radioactivity incorporated per COC compared with the control culture without AY9944-A-7. In contrast, incorporation of radioactivity into the cholesterol fraction was reduced 30-fold in extracts from the same oocytes. The present findings demonstrate for the first time that COC can synthesize cholesterol from mevalonate and accumulate FF-MAS in the presence of AY9944-A-7. Furthermore, AY9944-A-7 stimulated meiotic maturation dose dependently, indicating that FF-MAS, and possibly other sterol intermediates of the cholesterol synthesis pathway, play a central role in stimulating mouse oocytes to resume meiosis. The results also indicate that oocytes may not synthesize steroids from mevalonate.  相似文献   

19.
An inhibitor of cholesterol synthesis, AY 9944 (trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride) is teratogenic. A single dose of AY 9944 (50 mg/kg or 75 mg/kg) given to Wistar pregnant rats on the second, fourth, sixth, seventh, or eighth day of gestation induced malformations such as holoprosencephaly. They were often limited to isolated pituitary agenesis. The highest percentage of holoprosencephalic fetuses was found when AY 9944 was given on the fourth day of gestation. Whatever the dose and the day of administration, the lower the maternal plasma cholesterol level, the more frequent were holoprosencephalic fetuses. Therefore, it is suggested that the decrease in maternal plasma cholesterol level is at least one of the factors provoking holoprosencephaly.  相似文献   

20.
Site-1 protease (S1P) is a proprotein convertase with essential functions in lipid homeostasis and unfolded protein response pathways. We previously studied a mouse model of cartilage-specific knock-out of S1P in chondroprogenitor cells. These mice exhibited a defective cartilage matrix devoid of type II collagen protein (Col II) and displayed chondrodysplasia with no endochondral bone formation even though the molecular program for endochondral bone development appeared intact. To gain insights into S1P function, we generated and studied a mouse model in which S1P is ablated in postnatal chondrocytes. Postnatal ablation of S1P results in chondrodysplasia. However, unlike early embryonic ablations, the growth plates of these mice exhibit a lack of Ihh, PTHrP-R, and Col10 expression indicating a loss of chondrocyte hypertrophic differentiation and thus disruption of the molecular program required for endochondral bone development. S1P ablation results in rapid growth plate disruption due to intracellular Col II entrapment concomitant with loss of chondrocyte hypertrophy suggesting that these two processes are related. Entrapment of Col II in the chondrocytes of the prospective secondary ossification center precludes its development. Trabecular bone formation is dramatically diminished in the primary spongiosa and is eventually lost. The primary growth plate is eradicated by apoptosis but is gradually replaced by a fully functional new growth plate from progenitor stem cells capable of supporting new bone growth. Our study thus demonstrates that S1P has fundamental roles in the preservation of postnatal growth plate through chondrocyte differentiation and Col II deposition and functions to couple growth plate maturation to trabecular bone development in growing mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号