首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N6-(Δ2-Isopentenyl) adenosine antibodies were used for the isolation of free cytokinins and cytokinin-containing tRNAs from parts of Cucumis sativus L. var. Guntur seedlings and for the estimation of cytokinins in them. Immobilized N6-(Δ2-isopentenyl) adenosine antibodies retained tRNAs containing N6-(Δ2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine with equal efficiencies. There were at least five cytokinins in the free form in cucumber seedlings. N6-(4-Hydroxy-3-methylbut-2-enyl) adenosine, N6-(Δ2-isopentenyl) adenosine, and N6-(Δ2-isopentenyl) adenine were present at least to the extent of 80, 23, and 9 nanograms, respectively, in the cotyledons and 40, 6, and 3 nanograms, respectively, in the decotyledonated seedlings per gram of tissue. Only two cytokinins were found in the tRNAs of cucumber cotyledons, namely N6-(Δ2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine in amounts of 12 and 318 nanograms, respectively, per gram of tissue. Immunoaffinity chromatographic analysis of radiolabeled aminoacyl tRNAs from cucumber cotyledons showed that tRNAPhe and tRNATyr contained cytokinins whereas tRNAAla did not.  相似文献   

2.
As part of the study of cytokinin metabolic pathways, an enzyme, adenosine phosphorylase (EC 2.4.2.-), which catalyzed the ribosylation of N6-(Δ2-isopentenyl)adenine, N6-furfuryladenine, and adenine to form the corresponding nucleosides, was partially purified from wheat (Triticum aestivum) germ. The pH optimum for the ribosylation of the cytokinins and adenine was from 6.5 to 7.8; for guanine and hypoxanthine it was from 7.0 to 8.5 At pH 7.2 (63 millimolar N-2-hydroxyethyl piperazine-N′-ethanesulfonic acid) and 37 C the Km for N6-(Δ2-isopentenyl)adenine was 57.1 micromolar; N6-furfuryladenine, 46.5 micromolar; adenine, 32.2 micromolar; and the Vmax for N6-(Δ2-isopentenyl)adenine, N6-furfuryladenine, and adenine were 134.7, 137.1, and 193.1 nanomoles per milligram protein per minute, respectively. The equilibrium constants of the phosphorolysis of N6-(Δ2-isopentenyl)adenosine and adenosine by this enzyme indicated that the reaction strongly favored nucleoside formation. This enzyme was shown to be distinct from inosine-guanosine phosphorylase based on the differences in the Sephadex G-100 gel filtration behaviors, pH optima, and the product and p-hydroxymercuribenzoate inhibitor studies. These results suggest that adenosine phosphorylase may play a significant role in the regulation of cytokinin metabolism.  相似文献   

3.
The cytokinin, N6-(Δ2-isopentenyl)adenine, is found to be at least 3.3 times as active as N6-(Δ2-isopentenyl)adenosine in promoting the growth of cytokinin-requiring tobacco (Nicotiana tabacum) callus. Absorption rates of N6-(Δ2-isopentenyl)adenine and N6-(Δ2-isopentenyl)adenosine by tobacco cells in liquid suspension do not differ significantly. In these cells, N6-(Δ2-isopentenyl)adenosine-5′-monophosphate, di-, and triphosphate are synthesized in both cases, but 7-glucosylation occurs significantly only with N6-(Δ2-isopentenyl)adenine, protecting thereby its N6-isopentenyl side chain from cleavage. Degradation by N6-side chain removal appears to be intense, leading to the formation of adenine, adenosine, and adenylic nucleotides. Thus, it is suggested that N6-(Δ2-isopentenyl)adenine-7-glucoside is a protected or storage form of the cytokinin which could account for the higher biological activity of N6-(Δ2-isopentenyl)adenine than of N6-(Δ2-isopentenyl)adenosine.  相似文献   

4.
Adenosine nucleosidase (adenosine ribohydrolase, EC 3.2.2.7) which catalyzes the deribosylation of N6-(Δ2-isopentenyl)adenosine and adenosine to form the corresponding bases was partially purified from wheat germ. This enzyme (molecular weight 59,000 ± 3,000) deribosylates the ribonucleosides at an optimum pH of 4.7 Km values for the cytokinin nucleoside and adenosine are 2.38 and 1.43 micromolar, respectively, in 50 millimolar Tris-citrate buffer (pH 4.7) at 30 C. The presence of adenosine and other cytokinin nucleosides inhibited the hydrolysis of N6-(Δ2-isopentenyl)adenosine but this reaction was insensitive to guanosine, uridine, or 3′-deoxyadenosine. It is hypothesized that an adequate level of “active cytokinin” in plant cells may be provided through the deribosylation of cytokinin riboside in concert with other cytokinin metabolic enzymes.  相似文献   

5.
Laloue M  Fox JE 《Plant physiology》1989,90(3):899-906
As part of the study of the possible role(s) of CBF-1, a cytokinin-binding protein abundant in wheat embryo, a cytokinin oxidase was found in wheat (Triticum aestivum L.) germ and partially purified by conventional purification techniques and high performance chromatofocusing. This preparation catalyzes conversion of N6-(Δ2-isopentenyl)adenosine to adenosine at a Vmax of 0.4 nanomol per milligram protein per minute at 30°C and pH 7.5, the Km being 0.3 micromolar. This high affinity and the apparent molecular weight of 40,000 estimated by high performance gel permeation on a Spherogel TSK-3000 SW column indicate that this enzyme is different from other cytokinin oxidases previously reported. Oxygen is required for the reaction, as for other cytokinin oxidases already described. N6-(Δ2-isopentenyl)adenine and zeatin riboside are also degraded, but N6-(Δ2-isopentenyl)adenosine-5′-monophosphate is apparently not a substrate. Benzyladenine is degraded, but to a small extent, and it inhibits slightly the degradation of N6-(Δ2-isopentenyl)adenosine. The degradation of N6-(Δ2-isopentenyl)adenosine is strongly inhibited by diphenylurea and its highly active derivative N-(2-chloro-4-pyridyl)-N′-phenylurea.  相似文献   

6.
Terrine C  Laloue M 《Plant physiology》1980,65(6):1090-1095
Uptake and degradation of the cytokinin, N6-(Δ2-isopentenyl) adenosine, were studied in tobacco cells grown as cell suspensions. Degradation occurs by cleavage of the isopentenyl chain which gives adenylic products. Rate of N62-isopentenyl)[8-14C]adenosine degradation increases several-fold after a 3- to 4-hour delay when cells have been exposed to a cytokinin. Consequently, only rates of N6-(Δ2-isopentenyl)adenosine degradation measured during the first 3 hours of incubation with [8-14C]-N-62-isopentenyl)adenosine are representative of the intrinsic in vivo cytokinin degradative activity of tobacco cells. Within these limits, it appears that cytokinin degradative activity is high in cytokinin-autonomous tobacco cells, as indicated by the half life of the supplied N62 isopentenyl adenosine (about 3 hours) when it is supplied at the physiological concentration of 0.2 micromolar. This cytokinin degradative activity appears to be under the control of cytokinins themselves because N6-(Δ2-isopentenyl)adenosine degradative activity is increased several-fold following a 3- to 4-hour delay after these cells have been exposed to a cytokinin.  相似文献   

7.
Three cytokinin-over-producing mutants of the moss, Physcomitrella patens, have been shown to convert [8-14C]adenine to N6-[14C](Δ2-isopentenyl)adenine, the presence of which was confirmed by thin layer chromatography, high performance liquid chromatography, and recrystallization to constant specific radioactivity. The labeled cytokinin was detected in the culture medium within 6 hours and the tissue itself appears to contain both labeled N6-(Δ2-isopentenyl)adenine and N6-(Δ2-isopentenyl)adenosine monophosphate.  相似文献   

8.
The activities of the free base and ribonucleoside forms of cytokinins bearing saturated and unsaturated N6-isoprenoid side chains have been examined in callus cultures derived from Phaseolus vulgaris cv. Great Northern, P. lunatus cv. Kingston, and the interspecific hybrid Great Northern × Kingston. In callus of cv. Great Northern, cytokinins bearing saturated side chains (N6-isopentyladenine, N6-isopentyladenosine, dihydrozeatin, and ribosyldihydrozeatin) were always more active than the corresponding unsaturated analogs (N6-[Δ2-isopentenyl]adenine, N6-[Δ2-isopentenyl]adenosine, zeatin, and ribosylzeatin). In callus of cv. Kinston, the cytokinins bearing unsaturated side chains were either more active or equally as active as the saturated compounds. These differences in cytokinin structure-activity relationships were correlated with differences in the metabolism of 14C-N6-(Δ2-isopentenyl)adenosine. In Great Northern tissues, this cytokinin was rapidly degraded to adenosine; in Kingston tissues, the major metabolite was the corresponding nucleotide. The growth responses of callus of the interspecific hybrid were intermediate between the parental tissues, and the metabolism of 14C-N6-(Δ2-isopentenyl)adenosine by the hybrid callus exhibited characteristics of both parental tissues. The results are consistent with the hypothesis that the weak activity of cytokinins with unsaturated side chains in promoting the growth of Great Northern callus is due to the rapid conversion of these cytokinins to inactive metabolites.  相似文献   

9.
Miura G  Hall RH 《Plant physiology》1973,51(3):563-569
When [8-14C]-N6-(Δ2-isopentenyl) adenosine is incubated with the endosperm of corn (2 weeks after pollination), it is converted to [14C]-N6-(4-hydroxy-3-methylbut-2-trans-enyl) adenosine, trans-ribosylzeatin. This biosynthetic step, N6-(Δ2-isopentenyl) adenosine to ribosylzeatin, also occurs in the mycorrhizal fungus, Rhizopogon roseolus.  相似文献   

10.
The biosynthesis of cytokinins was examined in pea (Pisum sativum L.) plant organs and carrot (Daucus carota L.) root tissues. When pea roots, stems, and leaves were grown separately for three weeks on a culture medium containing [8-14C]adenine without an exogenous supply of cytokinin and auxin, radioactive cytokinins were synthesized by each of these organs. Incubation of carrot root cambium and noncambium tissues for three days in a liquid culture medium containing [8-14C]adenine without cytokinin demonstrates that radioactive cytokinins were synthesized in the cambium but not in the noncambium tissue preparation. The radioactive cytokinins extracted from each of these tissues were analyzed by Sephadex LH-20 columns, reverse phase high pressure liquid chromatography, paper chromatography in various solvent systems, and paper electrophoresis. The main species of cytokinins detectable by these methods are N6-(Δ2-isopentyl_adenine-5′-monophosphate, 6-(4-hydroxy-3-methyl-2-butenyl-amino)-9-β-ribofuranosylpurine-5′- monophosphate, N6-(Δ2-isopentenyl)adenosine, 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-ribofuranosylpurine, N6-(Δ2-isopentenyl)adenine, and 6-(4-hydroxy-3-methyl-2-butenylamino)purine. On the basis of the amounts of cytokinin synthesized per gram fresh tissues, these results indicate that the root is the major site, but not the only site, of cytokinin biosynthesis. Furthermore, cambium and possibly all actively dividing tissues are responsible for the synthesis of this group of plant hormones.  相似文献   

11.
Kinetic parameters for cytokinin nucleosidase activity which catalyzes the deribosylation of N62-isopentenyl)adenosine (I6Ado) to produce the more “active” free base N52-isopenetyl)adenine (I6Ade) were compared for a normally ripening tomato (Lycopersicon esculentum L.) cultivar Rutgers, and two mutant tomato varieties (Nor and Rin). Km for nucleosidase activity in Rutgers was lower (Km = 0.1 millimolar) than that in either Nor (Km = 0.14 millimolar) or Rin (Km = 0.13 millimolar).  相似文献   

12.
Phosphorylation of cytokinin by adenosine kinase from wheat germ   总被引:5,自引:3,他引:2       下载免费PDF全文
Adenosine kinase was partially purified from wheat germ. This enzyme preparation, which was devoid of adenine phosphoribosyltransferase and nearly free of adenosine deaminase but contained adenylate kinase, rapidly phosphorylated adenosine and a cytokinin, N6-(δ2-isopentenyl)adenosine. Electrophoretic analysis indicated that only N6-(δ2-isopentenyl)adenosine-monophosphate was formed from the cytokinin while about 55% AMP, 45% ADP, and a trace of ATP were formed from adenosine. The biosynthesized nucleoside monophosphates were quantitatively hydrolyzed to the corresponding nucleosides by 5′-nucleotidase and the isopentenyl side chain of the phosphorylated cytokinin was not cleaved. The enzyme did not catalyze phosphorylation of inosine.  相似文献   

13.
Martin RC  Mok MC  Shaw G  Mok DW 《Plant physiology》1989,90(4):1630-1635
A reductase catalyzing the conversion of zeatin to dihydrozeatin was detected in soluble fractions of immature Phaseolus vulgaris embryos. The enzyme was partially purified by ammonium sulfate fractionation and affinity, gel filtration, and anion exchange chromatography. NADPH was the only cofactor required for enzyme activity, and the pH optimum was 7.5 to 8.0. The enzyme did not recognize compounds closely related to zeatin, such as ribosylzeatin, cls-zeatin, O-xylosylzeatin, N6-(Δ2-isopentenyl)adenine, or N6-(Δ2-isopentenyl)adenosine. No conversion of dihydrozeatin to zeatin by the enzyme was observed. Two forms of the reductase could be separated by either gel filtration or anion exchange high performance liquid chromatography. The high molecular weight isozyme (Mr 55,000 ± 5,000) eluted as the second peak from the anion exchange column, while the low molecular weight isozyme (Mr 25,000± 5000) was less negatively charged. The results suggest that side chain reduction occurs at the free base level. In addition, Phaseolus embryos are useful for the detection of zeatin-specific metabolic enzymes.  相似文献   

14.
N7-methylguanine at position 46 (m7G46) in tRNA is produced by tRNA (m7G46) methyltransferase (TrmB). To clarify the role of this modification, we made a trmB gene disruptant (ΔtrmB) of Thermus thermophilus, an extreme thermophilic eubacterium. The absence of TrmB activity in cell extract from the ΔtrmB strain and the lack of the m7G46 modification in tRNAPhe were confirmed by enzyme assay, nucleoside analysis and RNA sequencing. When the ΔtrmB strain was cultured at high temperatures, several modified nucleotides in tRNA were hypo-modified in addition to the lack of the m7G46 modification. Assays with tRNA modification enzymes revealed hypo-modifications of Gm18 and m1G37, suggesting that the m7G46 positively affects their formations. Although the lack of the m7G46 modification and the hypo-modifications do not affect the Phe charging activity of tRNAPhe, they cause a decrease in melting temperature of class I tRNA and degradation of tRNAPhe and tRNAIle. 35S-Met incorporation into proteins revealed that protein synthesis in ΔtrmB cells is depressed above 70°C. At 80°C, the ΔtrmB strain exhibits a severe growth defect. Thus, the m7G46 modification is required for cell viability at high temperatures via a tRNA modification network, in which the m7G46 modification supports introduction of other modifications.  相似文献   

15.
Cytokinin Secretion by Frankia sp. HFP ArI3 in Defined Medium   总被引:1,自引:1,他引:0       下载免费PDF全文
Frankia sp. HFP ArI3 (host plant Alnus rubra Bong.) was grown in defined medium and the culture solution was analyzed for the presence of various cytokinins and related compounds. N6- (Δ2-isopentenyl) adenosine was the only cytokinin detected by both high performance liquid chromatography and gas chromatography-mass spectrometry, at levels of approximately 1 ng/ml culture medium.  相似文献   

16.
Two forms (F-I and F-II) of 5′-nucleotidases (5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) which catalyze the dephosphorylation of N6-(Δ2-isopentenyl)adenosine 5′-monophosphate and AMP to form the corresponding nucleosides were partially purified from the cytosol of wheat (Triticum aestivum) germ. Both the F-I (molecular weight, 57,000) and F-II (molecular weight, 110,000) 5′-nucleotidases dephosphorylate the ribonucleotides at an optimum pH of 7. The Km values for the cytokinin nucleotide are 3.5 micromolar (F-I enzyme) and 12.8 micromolar (F-II enzyme) in 100 millimolar Tris-maleate buffer (pH 7) at 37 C. The F-I enzyme is less rapidly inactivated by heating than is the F-II enzyme. Both nucleotidases hydrolyze purine ribonucleoside 5′-phosphates, AMP being the preferred substrate. N6-(Δ2-isopentenyl)Adenosine 5′-monophosphate is hydrolyzed at a rate 72 and 86% that of AMP by the F-I and F-II nucleotides, respectively. Phenylphosphate and 3′-AMP are not substrates for the enzymes. It is proposed that dephosphorylation of cytokinin nucleotide by cytosol 5′-nucleotidases may play an important role in regulating levels of “active cytokinin” in plant cells.  相似文献   

17.
1,N6-Etheno-2-aza-adenosine was synthesized by treating 1,N6-etheno-adenosine with alkali, followed by nitrosation. The mechanism of formation of this novel nucleoside was elucidated using adenosine tritiated at C-8 and C-2, and was found to deformylate exclusively at C-2. This new 2-aza nucleoside fluoresces at 494 nm when excited at 358 nm. Toxicity study showed the compound is active in a rat mammary tumor tissue culture line, but inactive in HeLa and Glioma 26 tissue culture lines. It was also found to selectively inhibit the thymidine incorporation into DNA in a rat mammary tumor, but exhibits no ill effect on normal proliferative tissue. The reactive intermediate 3-β-D-ribofuranosyl-4-amino-5-(imidazol-2-yl) imidazole was identified and was found to be an active agent in tissue culture.  相似文献   

18.
The effects of a highly cytokinin-active urea derivative, N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (Thidiazuron), and zeatin on cytokinin-autonomous growth and the metabolism of N6-(Δ2-isopentenyl)[8-14C]adenosine ([14C]i6 Ado) were examined in callus tissues of two Phaseolus lunatus genotypes, cv Jackson Wonder and P.I. 260415. Tissues of cv Jackson Wonder maintained on any concentration of Thidiazuron became cytokinin autonomous, whereas only tissues exposed to suboptimal concentrations of zeatin displayed cytokinin-autonomous growth. Tissues of P.I. 260415 remained cytokinin dependent under all these conditions. The metabolism of [14C]i6 Ado was similar for the two genotypes, but differed with the medium used. [14C]i6 Ado was rapidly converted to N6-(Δ2-isopentenyl)[8-14C]adenosine 5′-P ([14C]i6 AMP) by tissues grown on zeatin-containing medium, whereas only traces of the nucleotide were formed in tissues grown on medium with Thidiazuron. Incubation with [14C] i6 AMP of tissues grown in the presence of Thidiazuron resulted in rapid conversion to [14C]i6 Ado, while [14C]i6 AMP persisted in tissues maintained on zeatin. Thus, Thidiazuron appears to stimulate enzyme activity converting the ribonucleotide to ribonucleoside. Although the cytokininactive phenylureas and adenine derivatives differ in their effects on cytokinin autonomy as well as nucleotide formation, the two types of effects do not seem to be related.  相似文献   

19.
The rpoZ gene encodes the small ω subunit of RNA polymerase. A ΔrpoZ strain of the cyanobacterium Synechocystis sp. PCC 6803 grew well in standard conditions (constant illumination at 40 µmol photons m−2 s−1; 32°C; ambient CO2) but was heat sensitive and died at 40°C. In the control strain, 71 genes were at least two-fold up-regulated and 91 genes down-regulated after a 24-h treatment at 40°C, while in ΔrpoZ 394 genes responded to heat. Only 62 of these heat-responsive genes were similarly regulated in both strains, and 80% of heat-responsive genes were unique for ΔrpoZ. The RNA polymerase core and the primary σ factor SigA were down-regulated in the control strain at 40°C but not in ΔrpoZ. In accordance with reduced RNA polymerase content, the total RNA content of mild-heat-stress-treated cells was lower in the control strain than in ΔrpoZ. Light-saturated photosynthetic activity decreased more in ΔrpoZ than in the control strain upon mild heat stress. The amounts of photosystem II and rubisco decreased at 40°C in both strains while PSI and the phycobilisome antenna protein allophycocyanin remained at the same level as in standard conditions. The phycobilisome rod proteins, phycocyanins, diminished during the heat treatment in ΔrpoZ but not in the control strain, and the nblA1 and nblA2 genes (encode NblA proteins required for phycobilisome degradation) were up-regulated only in ΔrpoZ. Our results show that the ω subunit of RNAP is essential in heat stress because it is required for heat acclimation of diverse cellular processes.  相似文献   

20.
The replication of double-stranded plasmids containing a single N-2-acetylaminofluorene (AAF) adduct located in a short, heteroduplex sequence was analyzed in Saccharomyces cerevisiae. The strains used were proficient or deficient for the activity of DNA polymerase ζ (REV3 and rev3Δ, respectively) in a mismatch and nucleotide excision repair-defective background (msh2Δ rad10Δ). The plasmid design enabled the determination of the frequency with which translesion synthesis (TLS) and mechanisms avoiding the adduct by using the undamaged, complementary strand (damage avoidance mechanisms) are invoked to complete replication. To this end, a hybridization technique was implemented to probe plasmid DNA isolated from individual yeast transformants by using short, 32P-end-labeled oligonucleotides specific to each strand of the heteroduplex. In both the REV3 and rev3Δ strains, the two strands of an unmodified heteroduplex plasmid were replicated in ~80% of the transformants, with the remaining 20% having possibly undergone prereplicative MSH2-independent mismatch repair. However, in the presence of the AAF adduct, TLS occurred in only 8% of the REV3 transformants, among which 97% was mostly error free and only 3% resulted in a mutation. All TLS observed in the REV3 strain was abolished in the rev3Δ mutant, providing for the first time in vivo biochemical evidence of a requirement for the Rev3 protein in TLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号