首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoskeleton in endocardial endothelium of rat heart was examined by en face confocal scanning laser microscopy. In the ventricular cavity, endocardial endothelial cells had a polygonal shape and F-actin staining was generally restricted to the peripheral junctional actin band. Central F-actin bundles, or stress fibers, in endocardial endothelial cells were found on the tendon end of papillary muscles, especially in the right ventricle, and frequently in the outflow tract of both ventricles; elsewhere, stress fibers were scarce. Many endocardial endothelial cells were elongated in areas of endothelium with stress fibers, but no correlation was found between cell elongation and the number of stress fibers. An inverse correlation was found between the number of stress fibers and the surface area of endocardial endothelial cells. Shear stress as well as mechanical deformation of the surface of the ventricular wall during the cardiac cycle may affect cell shape and the organization of actin filaments in endocardial endothelial cells. Vimentin in endocardial endothelial cells formed a filamentous network with some distinct cytoplasmic and juxtanuclear vimentin bundles. No perinuclear ring of vimentin filaments was observed in endocardial endothelium. Microtubules in endocardial endothelial cells were, in contrast to endothelial cells of rat aorta, not aligned, less closely packed and originated from randomly distributed centriolar regions. The cytoskeleton has been suggested to play an important role in cellular functions of vascular endothelial cells. Accordingly, differences in the cytoskeletal organization between endocardial and vascular endothelial cells may relate to differences in functional properties.  相似文献   

2.
Since actin microfilaments are essential in the maintenance of endothelial integrity and in the repair of injured endothelium, we have carried out a detailed study of the distribution of microfilaments in the immediate vicinity of aortic branches. Branches are of major interest because there is a predilection for atherosclerotic lesions near branch ostia. We made an extensive, systematic examination of branches of the aorta and iliac arteries using in situ staining of perfusion-fixed arteries. Microfilaments were localized using rhodamine phalloidin. Three patterns of staining were observed. Some endothelial cells showed prominent central stress fibers. Others had few central stress fibers but prominent peripheral fibers. Still others showed an intermediate pattern with some central and some peripheral fibers present. At small branch sites, the lip of the divider was more blunt, and there were more cells with peripheral actin. At large branches, cells with peripheral actin were confined mainly to the lip, while there were many more cells with prominent central fibers. We also found that major differences can occur over very small distances, so adjacent cells may have strikingly different patterns of microfilament distribution. These patterns appear to reflect the geometry of the flow divider and local variations in hemodynamic shear stress. The differences in microfilament distribution may reflect differences in endothelial functions which are essential in maintaining endothelial integrity.  相似文献   

3.
The organization of actin and myosin in vascular endothelial cells in situ was studied by immunofluorescence microscopy. Examination of perfusion-fixed, whole mounts of normal mouse and rat descending thoracic aorta revealed the presence of axially oriented stress fibers containing both actin and myosin within the endothelial cells. In both species, the proportion of cells containing stress fibers varied from region to region within the same vessel. Some endothelial cells in mouse mesenteric vein and in rat inferior vena cava also contained stress fibers. Quantitative studies of the proportion of endothelial cells containing stress fibers in the descending thoracic aorta of age- matched normotensive and spontaneously hypertensive rats revealed significant differences. When animals of the same sex of the two strains were compared, the proportion was approximately two times greater in the spontaneously hypertensive rats. The proportion of endothelial cells containing stress fibers was about two times greater in males than in females of both strains. These observations suggest that multiple factors, including anatomical, sex, and hemodynamic differences, influence the organization of the endothelial cell cytoskeleton in situ.  相似文献   

4.
To understand the role of microtubules and microfilaments in regulating endothelial monolayer integrity and repair, and since microtubules and microfilaments show some co-alignment in endothelial cells, we tested the hypothesis that microtubules organize microfilament distribution. Disruption of microtubules with colchicine in resting confluent aortic endothelial monolayers resulted in disruption of microfilament distribution with a loss of dense peripheral bands, an increase in actin microfilament bundles, and an associated increase of focal adhesion proteins at the periphery of the cells. However, when microfilaments were disrupted with cytochalasin B, microtubule distribution did not change. During the early stages of wound repair of aortic endothelial monolayers, microtubules and microfilaments undergo a sequential series of changes in distribution prior to cell migration. They are initially distributed randomly relative to the wound edge, then align parallel to the wound edge and then elongate perpendicular to the wound edge. When microtubules in wounded cultures were disrupted, dense peripheral bands and lamellipodia formation were lost with increases in central stress fibers. However, following microfilament disruption, microtubule redistribution was not disrupted and the microtubules elongated perpendicular to the wound edge similar to non-treated cultures. Microtubules may organize independently of microfilaments while microfilaments require microtubules to maintain normal organization in confluent and repairing aortic endothelial monolayers.  相似文献   

5.
The influence of intimal de-endothelialization on stress fiber expression in regenerating rat and rabbit aortic endothelium was studied using immunofluorescence microscopy. Rat thoracic and abdominal aortae were balloon de-endothelialized, and endothelial cell shape and stress fiber expression was studied in both uninjured and de-endothelialized animals. In control animals, the majority of thoracic endothelial cells did not contain stress fibers while the majority of abdominal endothelial cells did. One week after injury, all the endothelial cells distal to the regenerating edge contained very prominent stress fibers. In areas directly adjacent to the still de-endothelialized surface, the endothelial cells had an intense, diffuse cytoplasmic staining without stress fibers. Regenerating endothelium also had a substantially higher length-to-width ratio, but smaller cell areas. Six weeks after injury, the endothelium had completely regenerated, and stress fibers were lost from the majority of the thoracic endothelial cells. Changes in abdominal aorta stress fiber expression were not as marked. In the rabbit, all the control thoracic endothelial cells had stress fibers; however, cells at the leading edge of a narrow region of de-endothelialization had few stress fibers. The results suggest that stress fibers do not play a primary role in cellular migration in situ. The transient increase in stress fiber expression in the rat may result from a temporary demand for greater adhesive capabilities until the subendothelial extracellular matrix is remodeled.  相似文献   

6.
The ultrastructural association of endothelial cells with the subjacent elastic lamina was investigated in the developing mouse aorta by electron microscopy. In the 5-day postnatal aorta, extensive filament bundles extend along the subendothelial matrix connecting the endothelial cells to the underlying elastic lamina. The connecting filaments form lateral associations with the abluminal surface of the endothelial cells in regions of membrane occupied by membrane-associated dense plaques. On the intracellular face of each plaque, the termini of stress fibers penetrate and anchor to the cell membrane in alignment with the extracellular connecting filaments. Both the stress fibers and the connecting filaments are oriented parallel to the longitudinal axis of the vessel. High magnification electron micrographs of individual endothelial cell connecting filaments reveal features similar to those of elastin-associated microfibrils. Each connecting filament consists of a 9–10 nm linear core with an electron-lucent center and peripheral spike-like projections. From the filaments, small thread-like extensions span laterally, linking the filaments into a loose bundle and anchoring them to the endothelial cell membrane and the surface of the elastic lamina. The filaments also appear heavily coated with electron-dense material; often with some degree of periodicity along the filament length. During development, the number of endothelial cell connecting filaments decreases as the elastic lamina expands and the subendothelial matrix is reduced. In the aortic intima of mature mice, the elastic lamina is closely apposed to the abluminal surface of the endothelial cell and no connecting filaments are seen. These observations suggest that endothelial cell connecting filaments are developmental features of the aortic intima which, together with the intracellular stress fibers, aid to maintain the structural integrity of the endothelial cell layer during development by providing the cells with protection from intraluminal shear forces.  相似文献   

7.
Tension generation in endothelial cells of the aorta, spleen, and eye occurs in actin stress fibers, and is necessary for normal cell function. Sarcomeres are the tension-generating units of actin stress fibers in endothelial cells. How sarcomeres generate and maintain tension in stress fibers is not well understood. Using femtosecond laser ablation, we severed living stress fibers and measured sarcomere contraction under zero tension. The length of the sarcomere decreased in two phases: an instantaneous initial response, followed by a slower change in length attributed to myosin activity. The latter phase ceased abruptly after a minimum sarcomere length was reached, suggesting a rigid resistance that prevents further contraction. Furthermore, severed, contracted stress fibers did not relax when treated with myosin inhibitors, indicating that contracted stress fibers do not store elastic potential energy. These novel measurements combined with modeling suggest that myosin-generated forces in adjacent sarcomeres are directly in balance, and argue against sarcomere models with springlike elements in parallel with myosin contractile elements. We propose a new model for tension generation in the sarcomere, which provides a mechanistic interpretation for our observations and previous observations of inhomogeneous sarcomere contraction and apparent stress fiber viscoelastic behavior.  相似文献   

8.
9.
Immunofluorescence microscopy was used to determine the number of endothelial cells with stress fibers for three age groups, and for three distinct anatomical locations within the descending thoracic aorta of both normotensive and spontaneously hypertensive rats. For each age group examined, hypertensive rats consistently demonstrated greater stress fiber expression than did normotensive rats. Neither age nor blood pressure was the predominant influence on stress fiber expression in aortic endothelium. In the normotensive rats, stress fiber expression remained unchanged for all age groups examined. For both strains, however, more endothelial cells with stress fibers were found in those regions where fluid shear stresses are expected to be high, when compared with those regions where the fluid shear stresses are expected to be low. This observation suggests that anatomical location, with its implied differences in fluid shear stress levels, is a major influence on stress fiber expression within this tissue. Electron microscopy was used to determine the intracellular distribution of stress fibers for both strains. Most stress fibers in both strains were located in the abluminal portion of the endothelial cells. This result is consistent with a role for stress fibers in cellular adhesion. However, the hypertensive rats had a higher proportion of stress fibers in the luminal portion of their cytoplasm than the normotensive rats. This increased presence of stress fibers in the luminal portion of the cell may be important in maintaining the structural integrity of the endothelial cell in the face of elevated hemodynamic forces in situ.  相似文献   

10.
Endoglin is a component of the transforming growth factor-beta receptor complex abundantly expressed at the surface of endothelial cells and plays an important role in cardiovascular development and vascular remodeling. By using the cytoplasmic domain of endoglin as a bait for screening protein interactors, we have identified ZRP-1 (zyxin-related protein 1), a 476-amino acid member that belongs to a family of LIM containing proteins that includes zyxin and lipoma-preferred partner. The endoglin interacting region was mapped within the three double zinc finger LIM domains of the ZRP-1 C terminus. Analysis of the subcellular distribution of ZRP-1 demonstrated that in the absence of endoglin, ZRP-1 mainly localizes to focal adhesion sites, whereas in the presence of endoglin ZRP-1 is found along actin stress fibers. Because the LIM family of proteins has been shown to associate with the actin cytoskeleton, we investigated the possibility of a regulatory role for endoglin with regard to this structure. Expression of endoglin resulted in a dramatic reorganization of the actin cytoskeleton. In the absence of endoglin, F-actin was localized to dense aggregates of bundles, whereas in the presence of endoglin, expressed in endothelial cells, F-actin was in stress fibers and colocalized with ZRP-1. Furthermore, small interfering RNA-mediated suppression of endoglin or ZRP-1, or clustering of endoglin in endothelial cells, led to mislocalization of F-actin fibers. These results suggest a regulatory role for endoglin, via its interaction with ZRP-1, in the actin cytoskeletal organization.  相似文献   

11.
Flow cytometry and staining with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin were used to investigate organization of the actin cytoskeleton in rat embryo cells at different stages of normal and adenovirus E1A-induced cell cycles. In uninfected cells in G0-G1 and S phases, actin was predominantly in the form of stress fibers. In G2, this organization changed to peripheral rings of thin filaments, while during mitosis, actin had a diffuse distribution. Infection of quiescent rat cells by adenovirus caused them to enter the cell cycle and replicate DNA and also caused disruption of stress fibers. Rapid disappearance of stress fibers and the appearance of peripheral rings of actin filaments began from 13 h after infection and closely followed synthesis of the E1A proteins. Infected cells began S phase at about 24 h after infection, and cells in G2 and mitosis were seen from 30 to 50 h. Thus, disruption of the actin cytoskeleton is an early effect of E1A and not an indirect consequence of the entry of infected cells into the cell cycle.  相似文献   

12.
Maturation rates of vascular and visceral smooth muscle (SM) during ovine development were compared by quantifying contractile protein, myosin heavy chain (MHC) isoform contents, and contractile properties of aortas and bladders from female fetal (n = 19) and postnatal (n = 21) sheep. Actin, myosin, and protein contents rose progressively throughout development in both tissues (P 相似文献   

13.
Hemodynamic shear stress regulates endothelial cell biochemical processes that govern cytoskeletal contractility, focal adhesion dynamics, and extracellular matrix (ECM) assembly. Since shear stress causes rapid strain focusing at discrete locations in the cytoskeleton, we hypothesized that shear stress coordinately alters structural dynamics in the cytoskeleton, focal adhesion sites, and ECM on a time scale of minutes. Using multiwavelength four-dimensional fluorescence microscopy, we measured the displacement of rhodamine-fibronectin and green fluorescent protein-labeled actin, vimentin, paxillin, and/or vinculin in aortic endothelial cells before and after onset of steady unidirectional shear stress. In the cytoskeleton, the onset of shear stress increased actin polymerization into lamellipodia, altered the angle of lateral displacement of actin stress fibers and vimentin filaments, and decreased centripetal remodeling of actin stress fibers in subconfluent and confluent cell layers. Shear stress induced the formation of new focal complexes and reduced the centripetal remodeling of focal adhesions in regions of new actin polymerization. The structural dynamics of focal adhesions and the fibronectin matrix varied with cell density. In subconfluent cell layers, shear stress onset decreased the displacement of focal adhesions and fibronectin fibrils. In confluent monolayers, the direction of fibronectin and focal adhesion displacement shifted significantly toward the downstream direction within 1 min after onset of shear stress. These spatially coordinated rapid changes in the structural dynamics of cytoskeleton, focal adhesions, and ECM are consistent with focusing of mechanical stress and/or strain near major sites of shear stress-mediated mechanotransduction.  相似文献   

14.
Kaunas R  Usami S  Chien S 《Cellular signalling》2006,18(11):1924-1931
Cyclic mechanical stretch associated with pulsatile blood pressure can modulate cytoskeletal remodeling and intracellular signaling in vascular endothelial cells. The aim of this study was to evaluate the role of stretch-induced actin stress fiber orientation in intracellular signaling involving the activation of c-jun N-terminal kinase (JNK) in bovine aortic endothelial cells. A stretch device was designed with the capability of applying cyclic uniaxial and equibiaxial stretches to cultured endothelial cells, as well as changing the direction of cyclic uniaxial stretch. In response to 10% cyclic equibiaxial stretch, which did not result in stress fiber orientation, JNK activation was elevated for up to 6 h. In response to 10% cyclic uniaxial stretch, JNK activity was only transiently elevated, followed by a return to basal level as the actin stress fibers became oriented perpendicular to the direction of stretch. After the stress fibers had aligned perpendicularly and the JNK activity had subsided, a 90-degree change in the direction of cyclic uniaxial stretch reactivated JNK, and this activation again subsided as stress fibers became re-oriented perpendicular to the new direction of stretch. Disrupting actin filaments with cytochalasin D blocked the stress fiber orientation in response to cyclic uniaxial stretch and it also caused the uniaxial stretch-induced JNK activation to become sustained. These results suggest that stress fiber orientation perpendicular to the direction of stretch provides a mechanism for both structural and biochemical adaptation to cyclic mechanical stretch.  相似文献   

15.
Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.  相似文献   

16.
The cytoskeleton of endothelial cells is a modulator of all the cell reactions. The formation of a definitive structure of the bearing-contracting apparatus of the rat aorta endothelium is finished in the postnatal development (up to the age about 3 months after birth), passing through some qualitative changes. Using the transmission and scanning electron microscopy of detergent extracting preparations, the structuring pattern (saturation) of the aorta endothelial cell cytoskeleton of newborn animals. From 10 days to 1 month after birth, the most important period takes place within peripheral dense microfilament bundles are formed responsible for the cell monolayer integrity for the contractility of cell boundaries (it is most important in recombination of endothelial monolayer in the processes of cell proliferation and vessel growth) and also for the integrity of longitudinal bundles of microfilaments, i.e. fibres of tightening. The increase in anisotropy of cytoskeleton frame during its maturation evidences on the establishment of orientation of microfibril bundles, whose main function being the opposition to haemodynamic loading.  相似文献   

17.
Cultured cells in vitro from estrogen-induced rat prolactin-secreting adenomas (prolactinomas) were examined by indirect immunofluorescence microscopy for the distribution of cytoskeletal proteins and alterations of cytoskeleton after treatment with bromocriptine, colchicine and cytochalasin B (CB). After 8 days in culture, prolactinoma cells were well expanded and developed cytoplasmic processes were seen. The cytoplasmic microtubules were observed as fine reticular networks radiating from perinuclear portions toward the cell periphery when decorated with an antibody against tubulin. On the other hand, the actin filaments showed diffuse and spotty distribution when detected with an anti-actin antibody. Contaminated fibroblasts showed a reticular distribution of microtubules and a parallel array of actin cables which corresponds to "stress fibers" throughout the cytoplasm. After treatment with bromocriptine, the reticular distribution of microtubules in prolactinoma cells changed into a coarse and sparse pattern, which was identical with the changes in the distribution of tubulin after treatment with colchicine. On the other hand, distribution of actin was not affected by bromocriptine. Bromocriptine treatment did not alter the distribution of microtubules and actin filaments in fibroblasts, whereas colchicine changed the distribution of microtubules in both prolactinoma cells and fibroblasts. CB treatment changed the localization of actin filaments in both kinds of cells. These in vitro studies indicated bromocriptine would selectively affect the cytoplasmic microtubular system of prolactinoma cells.  相似文献   

18.
Stress fibers and bands of intermediate filaments (100 Å) were studied in cultured non-muscle cells using laser microbeam techniques. Wavelengths of 532, 537 and 280 nm were used, and no artificial chromophores were employed. Lesions were assayed using a combination of phase contrast, polarizing and transmission electron microscopy (TEM). (1) Stress fibers 1–2 μm in diameter were narrowed or completely servered by irradiation at 532, 537 and 280 nm. Stress fibers could be grouped into two classes: (a) those whose severed ends separated during the first few seconds following laser irradiation (46% of fibers irradiated); (b) those fibers which showed no movements (54%). Microtubules which paralleled stress fibers persisted in the presence of colcemid for up to 5 h, and alignment of the severed stress fiber ends was maintained even in their absence. Injured stress fibers appear to be repaired within 1 h of irradiation. (2) Bands of 100 Å filaments were induced in non-muscle cells in secondary cultures of neonatal rat heart by exposure to colcemid. Lesions which appeared as phase dense spots were induced in these bands by irradiation at 532, 537 and 280 nm. The positions of the lesions in the band relative to one another did not change over several hours despite movements of the entire band. These studies demonstrate that (a) stress fibers may be an excellent system in which to study subcellular repair; (b) induced bands of 100 Å filaments probably move passively in the cells containing them; (c) laser irradiation of cytoplasmic filaments in non-muscle cells does not require the introduction of an artificial chromophore.  相似文献   

19.
Jinguji Y 《Zoological science》2003,20(11):1359-1366
Organizational relationships between endothelial stress fibers and fibronectin fibrils in the developing chick abdominal aorta, from 5th day embryos to 3rd day young chicks, were studied with immunofluorescence and electron microscopy. Stress fibers, axially aligned parallel to the longitudinal cell axis, were expressed in the largely elongated endothelial cells, in embryos older than 8th day of incubation. Fibronectin fibrils in the aortic basal lamina, changed its organizational pattern from the network-like form to the straight bundles arranged parallel to the vessel's longitudinal axis after 9th day of incubation. Such axial alignment was dominant in the matrix beneath the elongated cells containing stress fibers, suggesting the existence of stress fibers may possibly modify the fibronectin's organizational pattern. The vinculin-containing dense plaque, which shaped like as the adhesion plaque in the cultured cells, was located at the ends of or lateral associating sites of stress fibers in embryos older than 8th day stage. The expression of stress fibers, as well as the formation of stress fiber's end plaques, may closely relate to the alignment between the stress fiber and fibronectin fibrils in the extracellular matrix.  相似文献   

20.
Numerous studies have described the F-actin cytoskeleton; however, little information relevant to C-actin is available. The actin pools of bovine aortic endothelial cells were examined using in situ and in vitro conditions and fluorescent probes for G-(deoxyribonuclease I.0.3 μM) or F-actin (phalloidin, 0.2 μM). Cells in situ displayed a diffuse G-actin distribution, while F-actin was concentrated in the cell periphery and in fine stress fibers that traversed some cells. Cells of subconfluent or just confluent cultures demonstrated intense fluorescence, with many F-actin stress fibers. Postconfluent cultures resembled the condition in situ; peripheral F-actin was prominent, traversing actin stress fibers were greatly reduced and fluorescent intensity was diminished. Postconfluency had little influence on G-actin. with only an enhancement in the intensity of G-actin punctate fluorescence. When post-confluent cultures were incubated with cytochalasin D (15 min; 10--4 M), F-actin networks were disrupted and actin punctate and diffuse fluorescence increased. G-actin fluorescence was not altered by the incubation. Although its unstructured nature may account for the minor changes observed, the stability of the G-actin pool in the presence of notable F-actin modulations suggested that filamentous actin was the key constituent involved in these actin cytoskeletal alterations. A separate finding illustrated that the concomitant use of actin probes with image enhancement and fluorescent microscopy could reveal simultaneously the G- and F-actin pools within the same cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号