首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Expanded bed adsorption on supermacroporous cross-linked cellulose matrix   总被引:1,自引:0,他引:1  
Pai A  Gondkar S  Sundaram S  Lali A 《Bioseparation》1999,8(1-5):131-138
Rigid spherical macroporous adsorbent beads (CELBEADS) prepared by cross-linking of cellulose were characterised and found eminently suitable for use as expanded bed affinity chromatography matrix. Chromatographic runs were performed on a 10 mm diameter column with three solutes tyrosine, papain and bovine serum albumin under non-retaining conditions on CELBEADS and StreamlineTM DEAE, a commercial agarose based expanded bed matrix. Performance of the runs was measured in terms of height equivalent to theoretical plate, HETP. Variation in HETP with velocity on StreamlineTM DEAE gave flat profiles in packed bed and increasing trend in expanded bed. On CELBEADS, the HETP curves in both packed and expanded bed modes followed profiles typical of macroporous adsorbents i.e. increasing and levelling with velocity. HETP values obtained for papain and bovine serum albumin on CELBEADS were lower than those obtained on StreamlineTM DEAE at all velocities. Lactate dehydrogenase was purified from porcine muscle homogenate using Cibacron blue conjugated to CELBEADS using a protocol reported for supports with surface hydroxyl groups. Elution of the enzyme was investigated both in packed mode as well as in expanded mode at a flow rate of 1 ml min-1. The purification procedure took about 60 minutes and a purification fold of about 14 was achieved in both cases. The adsorbent could be cleaned in place with 5 M urea and used repeatedly without loss of performance.  相似文献   

2.
In the cellulase-cellulose reaction system, the adsorption of cellulase on the solid cellulose substrate was found to be one of the important parameters that govern the enzymatic hydrolysis rate of cellulose. The adsorption of cellulase usually parallels the rate of hydrolysis of cellulose. The affinity for cellulase varies depending on the structural properties of cellulose. Adsorption parameters such as the half-saturation constant, the maximum adsorption constant, and the distribution coefficient for both the cellulase and cellulsoe have been experimentally determined for several substrates. These adsorption parameters vary with the source of cellulose and the pretreatment methods and are correlated with the crystallinity and the specific surface area of cellulose substrates. The changing pattern of adsorption profile of cellulase during the hydrolysis reaction has also been elucidated. For practical utilization of cellulosic materials, the cellulose structural properties and their effects on cellulase adsorption, and the rate of hydrolysis must be taken into consideration.  相似文献   

3.
The adsorptive behavior of cells of Acetobacter aceti, ATCC 23746, on DEAE-, ECTEOLA-, TEAE-, and DEHPAE-cellulose ion exchangers in a modified Hoyer's medium at 30 degrees C was investigated. The maximum observed adsorption capacities varied from 46 to 64 mg dry wt/g resin. The Langmuir isotherm form was used to fit the data, since the cells formed a monolayer on the resin and exhibited saturation. The equilibrium constant in the Langmuir expression was qualitatively correlated with the surface charge density of the resin. The adsorption was also "normalized" by considering the ionic capacities of the resins. The exceptionally high normalized adsorption capacity of ECTEOLA-cellulose, 261 mg dry wt/meq, may be explained by an interaction between the cell wall and the polyglyceryl chains of the exchanging groups in addition to the electrostatic effects. The effect of pH on the bacterial adsorption capacity of ECTEOLA-, TEAE-, and phosphate-cellulose resins was studied and the pl of the bacteria was estimated to be 3.0.  相似文献   

4.
Summary A column cellulose hydrolysis reactor was set up using a single passage of cellulase enzyme which was followed with a continuous percolation of buffer. Hydrolysis rates were found to decline precipitously upon the removal of the non-adsorbed cellulase components. By comparing specific activities of the cellulase before and after adsorption on the cellulose column, it was concluded that the adsorption efficiencies for the cellulase components decreased from exoglucanase (1,4--d-glucan cellobiohydrolase EC 3.2.1.91) to endoglucanase [1,4-(1,3;1,4)--d-glucan 4-glucanohydrolase, EC 3.2.1.4] to -glucosidase (-d-glucoside glucohydrolase, EC 3.2.1.21). Of the adsorbed cellulase components, the rate of endoglucanase leaching from the cellulose column was 20 times that for the exoglucanase despite the greater adsorption efficiency of the latter. By analysing the cellulase components which were bound and not bound by the cellulose column and comparing them with a purified exoglucanase enzyme on sodium dodecyl sulfate polyacrylamide gels, it was confirmed that the major cellulase component adsorbed to the cellulose column was an exoglucanase component. The resultant loss of other cellulase components from the reactor was probably the cause for the much reduced rate of cellulose hydrolysis when these components were flushed out of the column.  相似文献   

5.
Immobilization of protamine to the inner lumen of cellulose hollow fibers has been shown useful in preventing both heparin- and protamine-induced complications during an extracorporeal blood circulation procedure. The current study examined the effects of variables on the immobilization of protamine to cyanogen bromide (CNBr)-activated cellulose hollow fibers. The degree of protamine immobilization was controlled by three independent parameters: the amount of CNBr used during the activation process, the duration of the coupling process, and the protamine concentration in the coupling solution. By the adjustment of these parameters, cellulose fibers containing desired amounts of immobilized protamine (ranging from 1 to 20 mg of immobilized protamine per gram of dry fibers) were readily prepared.Heparin adsorption to the protamine-bound cellulose fibers was also examined. The adsorption isotherm followed a Langmuir adsorption model. The amount of heparin adsorbed was dependent on both the heparin concentration in the substrate solution and the protamine loading on the fibers. The Langmuir adsorption constant K was estimated to be 0.37 +/- 0.06 mL/mg, whereas the saturation capacity Q(s) of the protamine-bound fibers increased with increasing the protamine loading.  相似文献   

6.
Cellobiohydrolase I (CBH I) has a higher adsorption affinity (K ad) and tightness (–H a) for Avicel than cellobiohydrolase II (CBH II). The adsorption processes of CBH I and II were exothermic, and the degree of exothermy were larger with the increasing ionic strength. Entropy change of CBH I was larger than CBH II with increasing ionic strength. CBH I was more effective than CBH II for binding at a given ionic strength.  相似文献   

7.
The forces and friction between cellulose spheres have been measured in the absence and presence of xyloglucan using an atomic force microscope. The forces between cellulose are monotonically repulsive with negligible adhesion after contact is achieved. The friction coefficient is observed to be unusually high in comparison with other nanotribological systems. We have confirmed that xyloglucan adsorbs strongly to cellulose, which results in a much stronger adhesion, which is dependent on the time the surfaces are in contact. Xyloglucan also increases the repulsion on approach of the cellulose surfaces, and the friction is markedly reduced. The apparently incompatible observations of decreased friction in combination with increased adhesion fulfills many of the necessary criteria for a papermaking additive.  相似文献   

8.
The immobilization of aminoacylase (N-acylamino acid amidohydrolase, EC 3.5.1.14) was investigated by using tannin immobilized on aminohexyl cellulose. The most active immobilized aminoacylase was obtained when aminoacylase was adsorbed to the immobilized tannin in a weak alkaline medium containing sodium chloride and n-butanol at 37 degrees C. The activity of the immobilized tannin-aminoacylase complex per unit volume was five times higher than that of the DEAE-Sephadex-aminoacylase complex used for industrial production of L-amino acids in our plants. The half-life of the immobilized tannin-aminoacylase complex was 20 days under continuous operation at a high concentration of substrate; on the contrary, that of the DEAE-Sephadex-aminoacylase complex was 0.5 days.  相似文献   

9.
10.
11.
A technique for the study of neutral carbohydrate binding protein-ligand interaction is described in this report. It is based on filtration on cellulose esters filters of a mixture of the binding protein and the radioactive ligand, following a treatment of this mixture with ammonium sulfate; the technique is described for the galactose binding protein and for the maltose binding protein of Escherichia coli. For the galactose binding protein, an ammonium sulfate concentration far below that required for precipitation of the protein is sufficient to promote an almost complete retention of the protein on the filters. Furthermore, the addition of ammonium sulfate does not modify the amount of preexisting binding protein-ligand complex, and, in much less than one second, leads to a conformation of the protein-ligand complex which does not allow further ligand binding or dissociation. Hence, the technique is not only very useful for the detection of binding proteins in crude extracts and during purification procedures, it is also of value in the determination of the kinetic parameters of protein-ligand interactions.  相似文献   

12.
A number of cellulosic materials were chemically and physically treated before being incubated with cellulase from Penicillium funiculosum. The most effective pretreatment for maximum increase in enzyme adsorption and rate of saccharification was a combination of homogenisation-ultrasonification-NaOH (10% w/v) treatment.  相似文献   

13.
14.
Summary To elucidate the effect of adsorption of cellulases during hydrolysis of crystalline cellulose, the relationship between the rate of hydrolysis and the adsorption of crude cellulases onto crystalline cellulose was investigated under various experimental conditions. Several phases of adsorption have been proposed to explain the process of cellulose hydrolysis by these enzymes. The process of hydrolysis calculated on the basis of these phases fitted well with that obtained experimentally.  相似文献   

15.
16.
The interaction between para-crystalline cellulose and the cross-linking glycan xyloglucan (XG) plays a central role for the strength and extensibility of plant cell walls. The coating of XGs on cellulose surfaces is believed to be one of the most probable interaction patterns. In this work, the effects of explicit water and side chain variation on the adsorption of XGs on cellulose are investigated by means of atomistic molecular dynamics simulations. The adsorption properties are studied in detail for three XGs on cellulose Iβ 1–10 surface in aqueous environment, namely GXXXGXXXG, GXXLGXXXG, and GXXFGXXXG, which differ in the length and composition of one side chain. Our work shows that when water molecules are included in the theoretical model, the total interaction energies between the adsorbed XGs and cellulose are considerably smaller than in vacuo. Furthermore, in water environment the van der Waals interactions prevail over the electrostatic interactions in the adsorption. Variation in one side chain does not have significant influence on the interaction energy and the binding affinity, but does affect the equilibrium structural properties of the adsorbed XGs to facilitate the interaction between both the backbone and the side chain residues with the cellulose surface. Together, this analysis provides new insights into the nature of the XG–cellulose interaction, which helps to further refine current molecular models of the composite plant cell wall.  相似文献   

17.
Homogeneous indanol dehydrogenase from monkey liver catalyzed the reversible conversion of 3 alpha- or 20 alpha-hydroxy groups of several bile acids and 5 beta-pregnanes to the corresponding 3- or 20-ketosteroids. The kcat values for the steroids determined at pH 7.4 were low, but the kcat/Km values for the 3-ketosteroids were comparable to or exceeded those for 1-indanol and xenobiotic carbonyl substrates. The enzyme transferred the 4-pro-R-hydrogen atom of NADPH to the 3 beta- or 20 beta-face of the ketosteroid substrate. Competitive inhibition of the hydroxysteroid dehydrogenase activity of the enzyme by medroxyprogesterone acetate, hexestrol, and 1,10-phenanthroline suggests that both 1-indanol and hydroxysteroid are oxidized at the same active site on the enzyme. The specific inhibitor of the enzyme, 1,10-phenanthroline, suppressed the 3 alpha-hydroxysteroid dehydrogenase activity in the crude extract of monkey liver by 50%. The results strongly suggest that indanol dehydrogenase acts as a 3(20)alpha-hydroxysteroid dehydrogenase in the metabolism of certain steroid hormones and bile acids.  相似文献   

18.
19.
Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were also carried out using an in situ UV-Vis spectrophotometric technique. The cellulose accessibilities measured by the solute exclusion and a cellulose-binding module (CBM)-containing green fluorescent protein (TGC) adsorption methods correlate well for both sets of samples. The substrate enzymatic digestibilities (SEDs) of the hornified substrates are proportional to the measured cellulose accessibilities. Approximately over 90% of the SED was contributed by the accessible pore surfaces of the hornified substrates, suggesting that the substrate external surface plays a minor role contributing to cellulose accessibility and SED. The cellulose accessibilities of the pretreated substrates correlated well with the amounts of cellulase adsorbed. The SEDs of these substrates directly correlated with the amounts of adsorbed cellulase.  相似文献   

20.
Protein adsorption onto solid substrates usually takes place in an irreversible fashion and this irreversible adsorption also occurs in some enzymatic reactions. In this work the adsorption behavior of intact β-1, 4-glucan-cellobiohydrolase (CBH I) from Trichoderma reesei onto microcrystalline cellulose was monitored by surface plasmon resonance and UV-spectral method. It was found that there existed reversible binding and irreversible binding of CBH I during its interaction with cellulose substrate. To evaluate the influence of adsorption on cellulose enzymatic hydrolysis, the reaction dynamics on pure cellulose were determined. A plot of the hydrolysis rate against the surface density of irreversibly adsorbed CBH I, revealed an inverse relationship in which an apparent decrease in the hydrolysis rate was observed with increasing surface density. Taken together, results presented here should be useful for modifying the binding characteristics of CBH I and making them more effective in cellulose hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号