首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Iron availability in plant tissues-iron chlorosis on calcareous soils   总被引:3,自引:1,他引:2  
Konrad Mengel 《Plant and Soil》1994,165(2):275-283
The article describes factors and processes which lead to Fe chlorosis (lime chlorosis) in plants grown on calcareous soils. Such soils may contain high HCO3 - concentrations in their soil solution, they are characterized by a high pH, and they rather tend to accumulate nitrate than ammonium because due to the high pH level ammonium nitrogen is rapidly nitrified and/or even may escape in form of volatile NH3. Hence in these soils plant roots may be exposed to high nitrate and high bicarbonate concentrations. Both anion species are involved in the induction of Fe chlorosis.Physiological processes involved in Fe chlorosis occur in the roots and in the leaves. Even on calcareous soils and even in plants with chlorosis the Fe concentration in the roots is several times higher than the Fe concentration in the leaves. This shows that the Fe availability in the soil is not the critical process leading to chlorosis but rather the Fe uptake from the root apoplast into the cytosol of root cells. This situation applies to dicots as well as to monocots. Iron transport across the plasmamembrane is initiated by FeIII reduction brought about by a plasmalemma located FeIII reductase. Its activity is pH dependent and at alkaline pH supposed to be much depressed. Bicarbonate present in the root apoplast will neutralize the protons pumped out of the cytosol and together with nitrate which is taken up by a H+/nitrate cotransport high pH levels are provided which hamper or even block the FeIII reduction.Frequently chlorotic leaves have higher Fe concentrations than green ones which phenomenon shows that chlorosis on calcareous soils is not only related to Fe uptake by roots and Fe translocation from the roots to the upper plant parts but also dependent on the efficiency of Fe in the leaves. It is hypothesized that also in the leaves FeIII reduction and Fe uptake from the apoplast into the cytosol is affected by nitrate and bicarbonate in an analogous way as this is the case in the roots. This assumption was confirmed by the highly significant negative correlation between the leaf apoplast pH and the degree of iron chlorosis measured as leaf chlorophyll concentration. Depressing leaf apoplast pH by simply spraying chlorotic leaves with an acid led to a regreening of the leaves.  相似文献   

2.
Effect of silicon on the growth and phosphorus uptake of rice   总被引:19,自引:1,他引:19  
A pot experiment was conducted to measure the effect of silicon on phosphorus uptake and on the growth of rice at different P levels. Rice (Oryza sativa L. cv. Akebono) was cultured in Kimura B nutrient solution without and with silicon (1.66 mM Si) and with three phosphorus levels (0.014 mM P, low; 0.21 mM, medium; and 0.70 mM, high).Shoot dry weight with Si (+Si) in solution increased with increasing P level, while shoot weight without Si (–Si) was maximum at 0.21 mM P, suggesting that +Si raised the optimum P level for rice. +Si increased shoot weight more when P was low or high than when P was medium.The concentration and amount of inorganic P in shoots increased with increasing P level. +Si did not significantly decrease P uptake by rice at 0.014 mM P, however, uptake at 0.21 and 0.70 mM P was 27 and 30 percent less than uptake with –Si, respectively. In –Si with 0.21 and 0.70 mM P, inorganic P in shoots was more than double the concentration in shoots grown in +Si solutions.The Si concentration in shoots decreased slightly with increasing P level, although Si uptake was not significantly affected by P. +Si decreased the uptake of Fe and Mn by an average of 20 and 50 percent, respectively, thus P/Mn and P/Fe ratios increased in the shoot when P was low.From the results above, the beneficial effect of Si on the growth of rice was clearly shown when P was low or high. This effect may have resulted from decreased Mn and Fe uptake, and thus increased P availability within P deficient plants, or from reduced P uptake when P was high.  相似文献   

3.
Brand  J.D.  Tang  C.  Graham  R.D. 《Plant and Soil》2000,219(1-2):263-271
Commercial narrow-leafed lupins (Lupinus angustifolius L.) grown on calcareous soils commonly display chlorotic symptoms resembling Fe deficiency. The severity of chlorosis increases with concurrent increases in soil moisture content. Our research has indicated that the rough-seeded lupin species, Lupinus pilosus Murr., has a range of adaptation to calcareous soils, from tolerant to intolerant. A pot experiment was conducted comparing a tolerant, a moderately tolerant and a moderately intolerant genotype of L. pilosus. Plants were grown for 35 days in a calcareous soil (50% CaCO3) at three moisture contents (80%, 100% and 120% of field capacity); the growth was compared with that on a fertile black cracking clay control soil at 70% of field capacity. Visual chlorosis score, chlorophyll meter readings, number of leaves and shoot dry weights were recorded at 14, 21, 28 and 35 days after sowing. Concentrations of chlorophyll, active Fe and nutrients in the youngest fully expanded leaves were also measured. Results showed that increased soil moisture increased the severity of chlorotic symptoms (increased chlorosis score) in all genotypes. The tolerant genotype showed significantly less symptoms than other genotypes at all moisture contents. All genotypes were able to recover from chlorosis symptoms at 80% moisture in the calcareous soil. Chlorosis score negatively correlated with chlorophyll meter readings, chlorophyll concentration and foliar active and total Fe, and Mn concentrations. Visual chlorosis score appeared to be a cost effective, accurate and efficient method enabling classification of the tolerance of genotypes. The chlorotic symptoms were likely to be due to HCO3 - induced nutrient deficiencies or a direct effect of HCO3 - on chlorophyll synthesis. This study indicates that the most probable mechanism of tolerance is related to an ability to prevent uptake of HCO3 - or efficiently sequester it once inside the root which prevents increases in internal pH and transport to the shoots.  相似文献   

4.
Ratoon sugarcane plantlets in southern China have suffered a serious chlorosis problem in recent years. To reveal the causes of chlorosis, plant nutrition in chlorotic sugarcane plantlets and the role of manganese (Mn) in this condition were investigated. The study results showed that the pH of soils growing chlorotic plantlets ranged from 3.74 to 4.84. The symptoms of chlorosis were similar to those of iron (Fe) deficiency while the chlorotic and non-chlorotic plantlets contained similar amount of Fe. Chlorotic plantlets had 6.4-times more Mn in their leaf tissues compared to the control plants. There was a significantly positive correlation between Mn concentration in the leaves and the exchangeable Mn concentration in the soils. Moreover, leaf Mn concentration was related to both seasonal changes in leaf chlorophyll concentration and to the occurrence of chlorosis. Basal stalks of mature sugarcanes contained up to 564.36 mg·kg-1 DW Mn. Excess Mn in the parent stalks resulted in a depress of chlorophyll concentration in the leaves of sugarcanes as indicated by lower chlorophyll concentration in the leaves of plantlets emerged from basal stalks. Ratoon sugarcane plantlets were susceptible to chlorosis due to high Mn accumulation in their leaves (456.90–1626.95 mg·kg-1 DW), while in planted canes chlorosis did not occur because of low Mn accumulation (94.64–313.41mg·kg-1 DW). On the other hand, active Fe content in chlorotic plantlets (3.39 mg kg-1 FW) was only equivalent to 28.2% of the concentration found in the control. These results indicate that chlorosis in ratoon sugarcane plantlets results from excessive Mn accumulated in parent stalks of planted cane sugarcanes grown on excessive Mn acidic soils, while active Fe deficiency in plantlets may play a secondary role in the chlorosis.  相似文献   

5.
Silber  A.  Yones  L. Ben  Dori  I. 《Plant and Soil》2004,262(1-2):205-213
The effect of modification of the rhizosphere pH, via solution-N concentration and source, on rice flower (Ozothamnus diosmifolius, Astraceae) growth was investigated in two different experiments. In order to simulate a wide range of pHs easily, the plants were grown in an inert artificial substrate (perlite). In the first the rhizosphere pH was modified through variation of N concentrations and the NH4/NO3-N ratio in the irrigation water. In the second the rhizosphere pH was modified solely by altering the NH4/NO3-N ratio while irrigation-N concentration was held at the level found to be optimal in the first experiment. Cultivation of rice flower, a new crop in Israel, is hampered by lack of knowledge on its Zn nutrition. Because availability of soil Zn largely depends on pH we investigated in the second experiment the effect of Zn foliar application. The growth of rice flower plants under low-N fertilization or low NH4/NO3-N ratio was poor and the plants exhibited growth disorders such as tipburn, severe chlorosis and necrosis. These growth disorders could not be ascribed to any direct effect of N nutrition therefore it was suggested that the indirect effect of the treatments, e.g., the rhizosphere pH dominates rice flower growth through its effect on nutrient availability. The only nutrient that was significantly correlated with pH and yield parameters in both experiments was Zn. All irrigation-nutrients concentrations were within the recommended range for hydroponically grown plants; however, the leaf-Mn concentration of plants grown in pH above 7.5 was in the toxic range while that of Zn was deficient. The high preferential uptake of Mn over Zn by rice flower plants and the question of whether high Mn uptake induced Zn deficiency remain open.  相似文献   

6.
Summary Exposure of the leaves of young barley plants to nitrogen dioxide (NO2) was shown to affect the rate of translocation of N, the form in which it is transported in the xylem stream and the partitioning of N between roots and shoots. Following its entry through the leaves, NO2 is assimilated by the plant into reduced nitrogenous compounds which accounted for the major increases in plant N content and growth. The various effects of atmospheric NO2 upon barley seedlings were strongly influenced by nitrate supply to the roots.  相似文献   

7.
Effect of silicate on phosphate availability for rice in a P-deficient soil   总被引:8,自引:0,他引:8  
In a pot experiment the effect of silicate on P availability for rice grown in a P-deficient soil with and without flooding was analyzed. Treatments were designed as follows: C (control: Yakuno soil), SS (sodium silicate application, at 0.47 mg Si g-1 soil) and SC (sodium carbonate application). In order to separate pH effect from Si effect, SC was adjusted to the same pH as SS.Soil pH of SS and SC increased by 1.0 unit. Shoot dry weight of SC plants, and more so of SS plants, increased under both nonflooded and flooded conditions. P concentrations in the shoots were not increased under either condition of SS and SC. With SS, Si concentration in the shoots significantly increased, Mn concentration significantly decreased, resulting in a higher P/Mn ratio in the shoot, but not with SC. Both SS and SC increased N concentration in the shoots nearly two times compared with control under both conditions.Adsorption experiments showed that neither SS nor SC decreased P adsorption by soil. SS also could not displace the adsorbed P in soil samples which had previously either received P or not.These results suggest that the beneficial effects of silicate on rice growth do not result from increasing P availability in soil. The Si effect may be attributed to decreasing Mn uptake, thus indirectly improving P utilization in the plant.  相似文献   

8.
The uptake of nitrate by plant roots causes a pH increment in rhizosphere and leads to iron (Fe) deficiency in rice. However, little is known about the mechanism how the nitrate uptake‐induced high rhizosphere pH causes Fe deficiency. Here, we found that rice showed severe leaf chlorosis and large amounts of Fe plaque were aggregated on the root surface and intercellular space outside the exodermis in a form of ferrihydrite under alkaline conditions. In this case, there was significantly decreased Fe concentration in shoots, and the Fe deficiency responsive genes were strongly induced in the roots. The high rhizosphere pH induced excess hydrogen peroxide (H2O2) production in the epidermis due to the increasing expression of NADPH‐oxidase respiratory burst oxidase homolog 1, which enhanced root oxidation ability and improved the Fe plaque formation in rhizosphere. Further, the concentrated H2O2 regulated the phenylpropanoid metabolism with increased lignin biosynthesis and decreased phenolics secretion, which blocked apoplast Fe mobilization efficiency. These factors coordinately repressed the Fe utilization in rhizosphere and led to Fe deficiency in rice under high pH. In conclusion, our results demonstrate that nitrate uptake‐induced rhizosphere alkalization led to Fe deficiency in rice, through H2O2‐dependent manners of root oxidation ability and phenylpropanoid metabolism.  相似文献   

9.
Parameters related to leaf photosynthesis were evaluated in three genotypes of common bean ( Phaseolus vulgaris L.) with contrasting tolerance to Mn toxicity. Two short-term studies in solution culture were used to assess the effect of excess Mn on CO2 assimilation in mature and immature leaves. Mn toxicity decreased total chlorophyll content only in immature leaves, with a consequent reduction of leaf CO2 assimilation. Mature leaves that showed brown speckles characteristic of Mn toxicity, did not suffer any detriment in their capacity to assimilate CO2, at least in a 4-day experiment. Stomatal conductance and transpiration were not affected by the presence of high levels of Mn in leaf tissue. Lower stomatal conductance and transpiration rates were observed only in leaves with advanced chlorosis. Differences among genotypes were detected as increased chlorosis in the more sensitive genotype ZPV-292, followed by A-283 and less chlorosis in the tolerant genotype CALIMA. Since CO2 assimilation expressed per unit of chlorophyll was not different between high-Mn plants and control plants, we conclude that the negative effect of Mn toxicity on CO2 assimilation can be explained by a reduction in leaf chlorophyll content.  相似文献   

10.
The topography, morphology, hydrography, temperature conditions and water chemistry of an acid thermal lake, Lake Rotowhero. North Island, New Zealand, were studied and related to lake biology. Results are given for analyses of O2, pH, conductivity, Ca, Mg, Na, K, SO4, Cl, Si, total-P, reactive-P, NH4-N, NO3 N, NO2-N As, Fe, Mn, Zn, Cu, total dissolved solids, chlorophyll and total pigment. Sediment mineralogy and total carbon content are mentioned.  相似文献   

11.
Spinach (Spinacia oleracea L.) is considered a nitrogen (N) intensive plant with high nitrate (NO3?) accumulation in its leaves. The current study via a two-year field trial introduced an approach by combining N fertilization from different sources (e.g., ammonium nitrate; 33.5 % N, and urea; 48 % N) at different rates (180, and 360 kg N ha?1) with the foliar spraying of molybdenum (Mo) as sodium molybdate, and/or manganese (Mn) as manganese sulphate at rates of 50 and 100 mgL?1 of each or with a mixture of Mo and Mn at rates of 50 and 50 mg L?1, respectively on growth, chemical constituents, and NO3? accumulation in spinach leaves. Our findings revealed that the highest rate of N fertilization (360 kg N ha?1) significantly increased most of the measured parameters e.g., plant length, fresh and dry weight plant?1, number of leaves plant?1, leaf area plant?1, leaf pigments (chlorophyll a, b and carotenoids), nutrients (N, P, K, Fe, Mn, Zn), total soluble carbohydrates, protein content, net assimilation rate, and NO3? accumulation, but decreased leaf area ratio and relative growth rate. Moreover, plants received urea-N fertilizer gave the highest values of all previous attributes when compared with ammonium nitrate –N fertilizers, and the lowest values of NO3? accumulation. The co-fertilization of N-Mo-Mn gave the highest values in all studied attributes and the lowest NO3? accumulation. The best treatment was recorded under the treatment of 360 kg N-urea ha?1 in parallel with the combined foliar application of Mo and Mn (50 + 50 mg L?1). Our findings proposed that the co-fertilization of N-Mo-Mn could enhance spinach yield and its quality, while reducing NO3? accumulation in leaves, resulting agronomical, environmental and economic benefits.  相似文献   

12.
Iron (Fe) deficiency chlorosis is a common and severe nutritional deficiency in plants, and nitric oxide (NO) is an important signaling molecule in regulating Fe homeostasis in plants. We studied the effect of sodium nitroprusside (SNP, an NO donor) on Fe uptake, translocation, storage, and activation in a greenhouse. The concentrations of active Fe, total Fe, and the ratio of active Fe to total Fe, the activities of key enzymes, and chlorophyll concentration were determined, and resistance to oxidative stress and mineral element distribution in peanut plants grown in Fe sufficiency and Fe deficiency (an absence of Fe and low level of Fe concentration) conditions were also investigated. The results showed that NO significantly increased the concentration of active Fe and the ratio of active Fe to total Fe in Fe-deficient plants, and increased active Fe concentration in leaves and stems of Fe-sufficient plants. NO application also increased Fe translocation from roots to the shoots and the accumulation of Fe in cell organelles and the soluble fraction in leaves, especially in the low-level Fe concentration condition, thus increased available Fe and chlorophyll concentration in leaves of Fe-deficient plants. The activities of key enzymes were regulated by NO, which effectively mitigated oxidative damages by enhancing the activities of antioxidant enzymes (SOD, POD, CAT), increasing H+-ATPase and Ca2+-ATPase activities to balance the ion (Fe, Ca, Mg and Zn) uptake and distribution in Fe-deficient plants. However, NO application had no obvious effect on these variables in Fe-sufficient plants. These results indicated that NO application can improve Fe uptake, translocation, and activation of related enzymes in Fe-deficient plants, thus mitigating the adverse effect of Fe deficiency.  相似文献   

13.
Summary The cause of leaf chlorosis, frequently observed on soybeans (Glycine max (L.) Merr.) grown on high pH soils of the Mississippi Blackland Prairie, is thought to be low Fe availability and restricted rooting. Three greenhouse experiments were conducted using two soils, Sumter, a Rendollic Eutrocrept and Okolona, a Typic Chromudert; nine soybean cultivars differing in Feefficiency; and trifluralin (α-α-α-trifluoro-2,6-dinitro-N, N-di-propyl-p-toludine). Trifluralin at rates greater than 0.56 kg/ha caused chlorosis which was more severe on the Sumter, a soil low in available Fe. Fe-efficient cultivars were more resistant to the chlorosis induced by trifluralin than the Fe-inefficient cultivars. It was concluded that the chlorosis is an Fe deficiency caused by reduced uptake. The herbicide-induced chlorosis can be avoided by proper dosage and placement of the herbicide.  相似文献   

14.
Zou  C.  Shen  J.  Zhang  F.  Guo  S.  Rengel  Z.  Tang  C. 《Plant and Soil》2001,235(2):143-149
Comparative studies on the effect of nitrogen (N) form on iron (Fe) uptake and distribution in maize (Zea mays L. cv Yellow 417) were carried out through three related experiments with different pretreatments. Experiment 1: plants were precultured in nutrient solution with 1.0×10–4 M FeEDTA for 6 d and then exposed to NO3–N or NH4–N solution with 1.0×10–4 M FeEDTA or without for 7 d. Experiment 2: plants were precultured with 59FeEDTA for 6 d and were then transferred to the solution with different N forms, and 0 and 1.0×10–4 M FeEDTA for 8 d. Experiment 3: half of roots were supplied with 59FeEDTA for 5 d and then cut off, with further culturing in treatment concentrations for 7 d. In comparison to the NH4-fed plants, young leaves of the NO3-fed plants showed severe chlorosis under Fe deficiency. Nitrate supply caused Fe accumulation in roots, while NH4–N supply resulted in a higher Fe concentration in young leaves and a lower Fe concentration in roots. HCl-extractable (active) Fe was a good indicator reflecting Fe nutrition status in maize plants. Compared with NO3-fed plants, a higher proportion of 59Fe was observed in young leaves of the Fe-deficient plants fed with NH4–N. Ammonium supply greatly improved 59Fe retranslocation from primary leaves and stem to young leaves. Under Fe deficiency, about 25% of Fe in primary leaves of the NH4-fed plants was mobilized and retranslocated to young leaves. Exogenous Fe supply decreased the efficiency of such 59Fe retranslocation. The results suggest that Fe can be remobilized from old to young tissues in maize plants but the remobilization depends on the form of N supply as well as supply of exogenous Fe.  相似文献   

15.
Grewal  Harsharn Singh  Williams  Rex 《Plant and Soil》1999,214(1-2):39-48
Response of 13 alfalfa (Medicago sativa L.) genotypes to varied Zn supply (+Zn: 2 mg kg−1 soil, −Zn: no added Zn) was studied in a pot experiment under controlled environmental conditions. Plants were grown for four weeks in a Zn-deficient siliceous sandy soil. Plants grown at no added Zn showed typical Zn deficiency symptoms i.e. interveinal chlorosis of leaves, yellowish-white necrotic lesions on leaf blades, necrosis of leaf margins, smaller leaves and a marked reduction in growth. There was solute leakage from the leaves of Zn-deficient plants, while no solute leakage from Zn-sufficient plants. The ratios of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn in Zn-deficient plants were extremely high compared with Zn-sufficient plants indicating disturbance of P:Zn, Fe:Zn, Cu:Zn and Mn:Zn balance within plant system by Zn deficiency. Genotypes differed markedly in Zn efficiency based on shoot dry matter production. Alfalfa genotypes also differed markedly in P:Zn ratio, Cu:Zn ratio and Fe:Zn ratio under —Zn treatment. The shoot dry weight, shoot:root ratio, chlorophyll content of fresh leaf tissue, solute leakage from the leaves, Zn uptake and distribution of Zn in shoots and roots were the most sensitive parameters of Zn efficiency. Zn-efficient genotypes had less solute leakage but higher shoot:root ratio and higher Zn uptake compared with Zn-inefficient genotypes. Under —Zn treatment, Zn-inefficient genotypes had less Zn partitioning to shoots (33–37%) and more Zn retained in roots (63–67%), while Zn-efficient genotypes had about equal proportions of Zn in roots (50%) and shoots (50%). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
A three-year field experiment was conducted in a commercial orange grove [Citrus sinensis (L.) Osb. cv. `Valencia late' grafted on Citrange Troyer] established on a calcareous soil in the south of Portugal, to investigate if flower analysis could be used to diagnose lime-induced iron chlorosis. In April, during full bloom, flowers and leaves were collected from 20 trees. Leaf samples were again collected from the same trees in May, June, July and August. Total chlorophyll was estimated in all the leaves sampled for foliar analysis, using a SPAD-502 apparatus. Leaves and flowers were analysed for N, P, K, Ca, Mg, Fe, Zn, Mn and Cu. Principal Component Analysis was used to evaluate the variation of nutrient concentrations in flowers, and linear regressions were established between these and the chlorophyll content of leaves 90 days after full bloom. Evaluation of the best-fit equation was carried out using separate data obtained from other groves. Variation in the pattern of floral mineral composition in the flowers showed contrasts between the increase in N, P and K and that of Ca, Fe and Zn, while the concentration of Mg, Mn and Ca varied synchronously. The ratio of Mg:Zn in flowers explained about half of the variation of chlorophyll in leaves later in the season. A ratio below 100 indicated that trees would develop iron chlorosis, while with a ratio above 200 leaves would remain green. An early prognosis of iron chlorosis based on floral analysis can benefit growers, since it allows them to apply treatments in time to prevent loss of fruit yield and quality due to iron chlorosis.  相似文献   

17.
Relationship between iron chlorosis and alkalinity in Zea mays   总被引:4,自引:0,他引:4  
Mengel, K. and Geurtzen, G. 1988. Relationship between iron chlorosis and alkalinity in Zea mays . - Physiol. Plant. 72: 460–465.
Maize ( Zea mays L. cv. Anjou 21) grown in nutrient solution with Fe-EDTA and with nitrate as the sole nitrogen source showed typical Fe-chlorosis symptoms after a growth period of 14–21 days. Alkalinity in roots, stems and leaves of the chlorotic plants was high. Transferring the chlorotic plants from the nitrate-containing nutrient solution to a solution of (NH4)2SO4 resulted in a regreening of leaves within 2–3 days which was associated with a decrease in solution pH, a decrease in alkalinity of plant parts, a translocation of Fe from roots to tops and a release of Fe into the outer solution. Similar effects were obtained when Fe chlorotic plants were transferred to a dilute HO solution with pH 3.5.
Spraying chlorotic leaves with indoleacetic acid or with fusicoccin led also to a regreening of leaves without having a major effect on leaf alkalinity.
Interpretation of the experimental results is based on the assumption that nitrate as sole N source leads to a high pH level in the apoplast resulting in the precipitation of Fe compounds, probably Fe oxide hydrate. Ammonium nutrition has the reverse effect since it lowers the apoplast pH and this can result in the dissolution of Fe compounds. Application of indoleacetic acid as well as fusicoccin supposedly stimulates the proton pumps in the plasmalemma of the leaf tissue. The resulting decrease in apoplast leaf pH in the microenvironment also leads to a dissolution of Fe compounds in the apoplast and thus promotes the uptake of Fe by the symplasm.  相似文献   

18.
The effect of N form and Si nutrition on rice (Oryza sativa L.) susceptibility to blast disease (caused by Pyricularia oryzae Cav.) was assessed in the greenhouse with nutrient solution culture. The N form supplied to the susceptible cultivar IR50 affected the relative infection efficiency (RIE) of P. oryzae measured as lesions/cm2 leaf. Plants given NO3 - were more susceptible than plants receiving NH4 +-N. This result may partially explain why plants grown in nonflooded soil, where NO3 - is the main source of inorganic N, are more susceptible to blast than plants grown in flooded soils, where NH4 + is the main inorganic N source. Nitrate-N and Mn concentration were higher in leaf blades of plants grown with NO3 -. Total-N, Si, and Fe concentration were not affected by N form. The addition of Si significantly increased IR50 resistance to blast. With 2.2 mol m-3 Si in solution, RIE values were lower by more than 90% than the control with no Si added in solution. The effect of Si accumulation in leaves at various positions was further studied in cultivars having differing levels of resistance (IR50, IR36, and IAC165). Silicon addition significantly reduced RIE in the three cultivars. Silicon concentration in the topmost leaves (the only leaves showing typical blast lesions) was not significantly different among the three cultivars when 2.2 mol m-3 Si was used. Silicon was an important component in the mechanism of resistance to blast and it was effective regardless of the original level of resistance of the cultivar used. Contribution from the Agronomy Unit, Agronomy-Physiology-Agroecology Division, International Rice Research Institute (IRRI), P.O. Box 933, 1099 Manila, Philippines, and Colegio de Postgraduados, Mexico. Part of a thesis submitted by the senior author in partial fulfillment of the requirements for the M.S. degree.  相似文献   

19.
The effects of Cd, in combination with salicylic acid (SA) and sodium nitroprusside (SNP), on ryegrass seedlings were studied. Exposure of plants to 0.1 mM CdCl2 for 2 weeks resulted in toxicity symptoms such as chlorosis and necrotic spots on leaves. The addition of 0.2 mM SA or 0.1 mM SNP slightly alleviated the toxic effects of Cd. After application of both SA and SNP, these symptoms significantly decreased. Treatment with Cd resulted in a decrease of dry weight of roots and shoots, chlorophyll content, net photosynthetic rate (P n), transpiration rate (T r), and the uptake and translocation of mineral elements. In Cd-treated plants, levels of lipoxygenase activity and malondialdehyde, hydrogen peroxide (H2O2), and proline contents significantly increased, whereas the activities of antioxidant enzymes, such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, decreased in both roots and shoots. The results indicated that Cd caused physiological stresses in ryegrass plants. The Cd-stressed plants exposed to SA or SNP, especially to SA + SNP, exhibited improved growth compared with Cd-stressed plants. Application of SA or SNP, especially the combination SA + SNP, considerably reduced root-to-shoot translocation of Cd and increased the activities of antioxidant enzymes in both roots and shoots of Cd-stressed plants. The interaction of SA and SNP increased chlorophyll content, P n and T r in leaves, and the uptake and translocation of mineral elements, and decreased lipid peroxidation and H2O2 and proline accumulation in roots and shoots. These results suggest that SA or SNP, and, in particular, their combination counteracted the negative effects of Cd on ryegrass plants.  相似文献   

20.
Metal uptake by iron-efficient and inefficient oats   总被引:18,自引:1,他引:18  
Metal uptake by oats depending on plant responses to Fe-deficiency stress was investigated. Coker 227 oats classified as Fe-efficient and TAM 0–312 oats as Fe-inefficient cultivars (Hopkins et al., 1992) were grown either alone or in combination in three sandy soils using a pot experiment. These soils were from a field trial with sludge-borne metals applications leading to an increased metal content. Plant shoots were harvested one month after growth. Because soil pH increased from 5.4 to 6.8, shoot Fe level decreased in the Fe-inefficient TAM 0–312 oats compared to Coker 227 oats when plants were grown alone. In combination, TAM 0–312 oats had a negative impact on the availability of Fe in the Fe-efficient Coker 227 oats. Especially, Coker 227 and TAM 0–312 shoots showed chlorosis in mixed culture with high Zn and Mn content in the soil (soil B). However, Fe content in TAM 0–312 shoots in mixed culture did not increase compared to monoculture in all soils. In metal-contaminated soils, TAM 0–312 oats grown alone obtained less Zn and Cd than Coker 227 oats. Additionally at soil pH 6.8, shoot Ni and Mn levels were also lower in TAM 0–312 oats than in Coker 227 oats. Shoot Zn, Cd, and Ni levels decreased in Coker 227 oats from mixed cultures, and were not different compared to those in TAM 0–312 oats. Cu uptake was similar in all treatments except for the mixed culture in soil B. Coker 227 oats have been found to release a phytosiderophore whereas TAM 0–312 did not (Brown et al., 1991). Results indicated that phytosiderophores may lead to a higher Zn, Cd and Ni supply in the rhizosphere of Coker 227 oats and to higher metal contents in their shoots than in TAM 0–312 oats which did not activate such mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号