首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Brain RNP particles were characterized to determine whether they play a role in the regulation of brain protein synthesis. RNP particles were isolated from the postribosomal supernatant of cerebral hemispheres of young rabbits, employing conditions which minimize adventitious protein-RNA interactions. Brain RNP particles consist of a different set of proteins compared to proteins associated with either 40 and 60s ribosomal subunits or polysomal mRNA. Poly(A+)mRNA from brain RNP particles stimulates the incorporation of [35S]methionine in a wheat embryo cell-free system and codes for a different set of proteins compared to poly(A+)mRNA isolated from polysomes (with some overlap; i.e. mRNA coding for brain-specific S100 protein is present in both RNP particles and polysomes).
Addition of total brain RNP particles to a cell-free wheat embryo system inhibits the endogenous incorporation of [35S]methionine. Total RNP particles were fractionated by sucrose density gradient centrifugation into a'light'and a'heavy'fraction. The light RNP fraction inhibited while the heavy RNP fraction stimulated protein synthesis in the wheat embryo cell-free system. Analysis of the protein composition of fractionated RNP particles revealed that the light and heavy RNP particles contained different sets of proteins. Together these results suggested that one class of brain RNP particles may contain a translational inhibitor and may be involved in the regulation of protein synthesis in the brain.  相似文献   

2.
Free and membrane-bound polysomes were isolated from rat liver in high yields with minimal degradation, cross-contamination, or contamination by nuclear or nonpolysomal cytoplasmic ribonucleoprotein. Poly(A)+ RNA fractions isolated from free and bound polysomal RNA (poly(A)+ RNAfree and poly(A)+ RNAbound) by oligo(dT) cellulose chromatography exhibited number-average lengths of 1,600 and 1,200 nucleotides, respectively, on formamide sucrose gradients. Poly(A)+ RNAfree and poly(A)+ RNAbound contain 9.1 +/- 0.55 and 10.7 +/- 0.50% poly(A) as measured by hybridization to [3H]poly(U) and comprise 2.37 and 1.22% of their respective polysomal RNA populations. Homologous poly(A)+ RNA-cDNA hybridizations revealed that greater than 95% of the mass of poly(A)+ RNAfree and poly(A)+ RNAbound contain nucleotide complexities of about 3.4 x 10(7) and 6.0 x 10(6), respectively. This represents about 20,000 and 5,000 poly(A)+ RNA species of average sizes. Heterologous hybridizations suggested that considerable overlap exists between poly(A)+ RNAfree and poly(A)+ RNAbound sequences that cannot be attributed to cross-contamination. This was confirmed by conducting heterologous reactions using kinetically enriched cDNA populations. Heterologous hybridizations involving poly(A)+ RNA derived from tightly bound polysomes and cDNAfree indicated tha most of the overlapping sequences are not contributed by loosely bound (high-salt releasable) polysomes. The ramifications of these findings are discussed.  相似文献   

3.
Accumulation of polyadenylated mRNA during liver regeneration.   总被引:1,自引:0,他引:1  
V Atryzek  N Fausto 《Biochemistry》1979,18(7):1281-1287
Cytoplasmic and polysomal polyadenylated mRNA [poly(A)+-mRNA] increased by 120% prior to the onset of DNA synthesis during the regeneration of rat liver following partial hepatectomy. Despite this large change in cytoplasmic mRNA and an approximately 50% increase in total nuclear RNA, the amount of polyadenylated nuclear RNA increased by only 15--20% during this time. Neither the average size of nuclear or of cytoplasmic polyadenylated mRNA nor the length of their poly(adenylic acid) [poly(A)] tracts changed during liver regeneration. Polysomal poly-(A)+-mRNA increased proportionately more and at a faster rate than rRNA during the first day following partial hepatectomy. Normal livers contained a substantial proportion of cytoplasmic poly(A)+-mRNA not associated with polysomes but this proportion was not altered in 3-h regenerating liver. Thus, in regenerating liver, most preexisting cytoplasmic mRNA does not appear to be recruited into polysomes prior to the substantial increase in the amount of cytoplasmic poly(A)+-mRNA.  相似文献   

4.
5.
A cDNA library in pBR322 was prepared with cytoplasmic poly(A)+RNA from mouse liver cells. From 1 to 1.5% of clones hybridized to either B1 or B2 ubiquitous repetitive sequences. Several clones hybridizing to a B2 repeat were partially sequenced. The full-length B2 sequence was found at the 3'-end of abundant 20S poly(A)+RNA (designated as B2+mRNAx) within the non-coding part of it. B2+mRNAx is concentrated in mouse liver polysomes and absent from cytoplasm of Ehrlich carcinoma cells. The B2 sequence seems to be located at the 3'-end of some other mRNAs as well. To determine the orientation of the B2 sequence in different RNAs, its two strands were labeled, electrophoretically separated, and used for hybridization with Northern blotts containing nuclear, cytoplasmic and polysomal RNAs. In nuclear RNA, the B2 sequence is present in both orientations; in polysomal and cytoplasmic poly(A)+RNAs, only one ("canonical") strand of it can be detected. Low molecular weight poly(A)+B2+RNA [1] also contains the same strand of the B2 element. The conclusion has been drawn that only one its strand can survive the processing. This strand contains promoter-like sequences and AATAAA blocks. The latter can be used in some cases by the cell as mRNA polyadenylation signals.  相似文献   

6.
The cytoplasm of early sea urchin embryos contains nonribosomal, high molecular weight RNA both associated with ribosomes in polysomes and free of ribosomes in particles termed free RNP. In a 1-hr labeling period, 50% of the newly synthesized RNA enters the pool of ribosome-free RNP particles during the cleavage stages, and this percentage decreases until less than 20% of the new RNA in the mesenchyme blastula stage is found in the free RNP. mRNA from both polysomes and free RNP contain poly(A)(+) and poly(A)(?) species. During the cleavage stages only 8–10% of the RNA from each fraction is polyadenylated; however, in the blastula, 40–50% of the nonhistone polysomal RNA is polyadenylated while only 22–30% of the free RNP RNA is polyadenylated. At any developmental stage, the poly(A)(+)RNA from the free RNA and polysomes have identical sedimentation profiles; this is also the case for the poly(A)(?)RNA except for the absence of the 9 S histone mRNA from the free RNP. Changes in poly(A)(+)RNA content and sedimentation profiles during development occur simultaneously in the free RNP and the polysomes. Kinetic studies of these two RNP populations as well as nuclear RNP show that the bulk of the free RNP are not unusually stable cytoplasmic components. The free RNP decay with a half-life of about 40 min while nuclear RNA and polysomal RNA display half-lives of about 12 and 65 min, respectively. Further, the rate of synthesis of the free RNP is not consistent with their being the only precursors for polysomes. Our estimates of the rates of synthesis for nuclear RNA, polysomes, and free RNP are, respectively, 1.1 × 10?15, 2.2 × 10?16, and 5.0 × 15?17 g/min/nucleus. The data on free RNP is discussed in terms of translational regulation of protein synthesis in the developing sea urchin.  相似文献   

7.
Poly(A)+RNA fractions prepared from free and loosely and tightly membrane-bound polysome populations (poly(A)+RNAfree, poly(A)+RNAloose, and poly(A)+RNAtight) were used to drive cDNA in homologous and heterologous hybridization reactions. A large fraction by mass of sequences was shared among the three poly(A)+RNA populations, but shared sequences exhibited distinct frequency distributions within the different populations. 13-15 in vitro translation products of poly(A)+RNAfree and poly(A)+RNAloose detected by gel electrophoresis were shared. Most of these were produced in different relative quantities by the two RNA populations. Five or six higher mol wt polypeptides were produced by poly(A)+RNAloose that were not detected as products of either poly(A)+free or poly(A)+RNAtight. We suggest that loosely bound polysomes may not be artifactually derived as reflected in their quantitatively distinct poly(A)+RNA population. Two tightly membrane-bound RNP fractions were prepared from rat liver on the basis of their release from or retention on purified rough microsomes or a crude membrane fraction after in vitro disaggregation of polysomes with high-salt and puromycin. Homologous and heterologous hybridizations involving their poly(A)+RNA fractions revealed that a large portion by mass of sequences was shared but that these sequences exhibited distinct frequency distributions in the two fractions. The RNA fractions produced exhibited distinct frequency distributions in the two fractions. The RNA fractions produced an identical set of in vitro translation products but individual polypeptides were produced in different relative quantities. This indicates that the two RNP fractions do not arise by any random artifactual process and suggests that they may represent functionally distinct populations.  相似文献   

8.
Dormant tuber tissue of Jerusalem artichoke ( Helianthus tuberosus L.) can be stimulated by wounding to initiate RNA and protein synthesis. No DNA synthesis or cell divisions occur unless an auxin is provided. Changes in polysomal profiles and levels of Poly(A)+-RNA in response to wounding and auxin treatment were studied. Polysomes were isolated at various times after excision and incubation of tissue in the presence or absence of 10−5 M 2,4-dichlorophenoxyacetic acid. Polysomal profiles were studied by sucrose density gradient centrifugation. Dormant tissue contained ribosomes mainly in monosome form. Within 4 h of excision, a significant increase in the polysomal fraction was observed both in control and auxin-treated tissue. Increases in polysomes continued during the next 20 h. Poly(A)+-RNA was isolated from total polysomal RNA by oligo(dT)-cellulose column chromatography. There was a large increase in the amount of poly(A)+-RNA within 4 h of excision. During the first 43 h of incubation, levels of total polysomal RNA as well as poly(A)+-RNA in tissue treated with 2,4-dichlorophenoxyacetic acid were significantly higher than those in controls.  相似文献   

9.
EFFECTS OF HYPOPHYSECTOMY ON RNA METABOLISM IN RAT BRAIN STEM   总被引:3,自引:2,他引:1  
Abstract— Ribosomal aggregates were isolated from rat brain stem and characterized as polysomes by sedimentation analysis and by their sensitivity to RNase and EDTA treatment.
Three weeks following hypophysectomy there was a significant decrease in the content of large polysomes in the rat brain stem. The incorporation of radioactive uridine into RNA was studied using a double-labelling technique with [3H]- and [14C]uridine and labelling periods of 70 and 180 min. It was found that after hypophysectomy the incorporation of radioactive uridine into total, nuclear and cytoplasmic RNA and in polysomes was decreased after 70 and 180 min. Information on the nature of the rapidly-labelled RNA in the various subcellular fractions was obtained by sucrose gradient sedimentation analysis.
After 70 min of labelling the nucleus contained heterogeneous RNA with a considerable fraction of RNA sedimenting faster than 28 S. In the cytoplasmic fraction heterogeneous 4 to 30 S RNA was found, presumably associated with RNP particles, whereas after 180 min the polyribosomal aggregates were also labelled.
The present results indicate a profound effect of hypophysectomy on the metabolism of all species of brain RNA investigated.  相似文献   

10.
11.
S Falkenthal  J A Lengyel 《Biochemistry》1980,19(25):5842-5850
We have characterized the copia RNA in the cytoplasm of cultured Drosophila cells. Copia RNA was detected and purified by hybridization to DNA of the plasmid cDm 1142, which contains the copia sequence. A large fraction (2.2%) of the total cytoplasmic poly(A)+ RNA was found to be copia RNA. Cytoplasmic copia RNA displays all the characteristics expected for a messenger RNA. It possesses a poly(A) tract identical in length with that of total poly(A)+ cytoplasmic RNA. It is associated with polysomes and can be released from this association by treatment with EDTA. When purified copia RNA is added to an mRNA-dependent rabbit reticulocyte lysate, three polypeptides of 51000, 33000, and 21000 daltons are seen. We have not determined if these are different polypeptides or if the two smaller polypeptides are fragments of the 51000-dalton polypeptide. The half-life of copia cytoplasmic RNA was determined in pulse--chase experiments to be 9.5 h; this is 1.6 times longer than the half-life of the intermediate decay class of total poly(A)+ cytoplasmic RNA. These properties provide strong evidence that copia RNA functions in vivo as a messenger RNA.  相似文献   

12.
Complex population of nonpolyadenylated messenger RNA in mouse brain   总被引:13,自引:0,他引:13  
J Van Ness  I H Maxwell  W E Hahn 《Cell》1979,18(4):1341-1349
The complexity of nonadenylated mRNA [poly(A)-mRNA] has been determined by hybridization with single-copy DNA (scDNA) and cDNA. Our results show that poly(A)- and poly(A)+ mRNA are essentially nonoverlapping (nonhomologous) sequence populations of similar complexity. The sum of the complexities of poly(A)+ mRNA and poly(A)- mRNA is equal to that of total polysomal RNA or total mRNA, or the equivalent of approximately 1.7 x 10(5) different sequences 1.5 kb in length. Poly(A)- mRNA, isolated from polysomal RNA by benzoylated cellulose chromatography, hybridized with 3.6% of the scDNA, corresponding to a complexity of 7.8 x 10(4) different 1.5 kb sequences. The equivalent of only one adenosine tract of approximately 20 nucleotides per 100 poly(A)- mRNA molecules 1.5 kb in size was observed by hybridization with poly(U). cDNA was transcribed from poly(A)- mRNA using random oligonucleotides as primers. Only 1-2% of the single-copy fraction of this cDNA was hybridized using poly(A)+ mRNA as a driver. These results show that poly(A)- mRNA shares few sequences with poly(A)+ mRNA and thus constitutes a separate, complex class of messenger RNA. These measurements preclude the presence of a complex class of bimorphic mRNAs [that is, species present in both poly(A)+ and poly(A)- forms] in brain polysomes.  相似文献   

13.
The isolation of poly(A)+ polysomal and nonpolysomal RNPs by oligo(dT)-cellulose chromatography has led to the identification of more than 20 polypeptides that bind to the poly(A)+ mRNA in growing Dictyostelium cells. Most of these polypeptides were identified in experiments using short-wave UV light (254 nm) to crosslink specifically bound proteins to the RNA. Digestion of the RNPs with ribonucleases A and T1 prior to their application to oligo(dT)-cellulose permitted the isolation of the 3' poly(A)-protein complexes. In polysomal RNPs, two major polypeptides, with molecular weights of 31,000 (p31) and 31,500 (p31.5), are bound to poly(A). These proteins can also be purified from cytoplasmic extracts by affinity chromatography on poly(A)-Sepharose. Partial proteolytic digestion of p31 and p31.5 indicates that they are closely related. The UV-crosslinking experiments established that p31 and p31.5 bind to the non-poly(A) segments of mRNA as well. In nonpolysomal RNPs, p31 and a polypeptide with a molecular weight of 29,500 (p29.5) are the major species associated with poly(A). Partial proteolytic digestion of p29.5 indicates that it is closely related to p31 and p31.5. Only small amounts of p29.5 were observed in the polysomal poly(A)-protein complexes. Early in Dictyostelium development, when cellular translation activity is sharply reduced, most of the p29.5, p31 and p31.5 present is selectively degraded. These observations are consistent with a translational role for these proteins.  相似文献   

14.
Cap binding protein (CBP)-related polypeptides were identified in different cytoplasmic RNP particles of embryonic chick muscles using monoclonal antibody to purified CBP. A single immunoreactive peptide (Mr 78000) was present in preparations of both free mRNP particles and a novel 10 S translation inhibitory RNP particle. In contrast, proteins isolated from these particles showed two new low-Mr immunoreactive peptides (Mr 43000 and Mr 29000). No CBP related protein could be detected in polysomal mRNP, although an immunoreactive Mr 43000 CBP-related protein was present in polysomes. The relevance of the association of different CBP-related polypeptides with cytoplasmic RNP particles and polysomes are discussed.  相似文献   

15.
The distribution of cytoplasmic messenger ribonucleic acids (RNAs) in translationally active polysomes and inactive ribonucleoprotein particles changes during early development. Cellular levels and subcellular distributions have been determined for most messenger RNAs, but little is known about how individual sequences change. In this study, we used hybridization techniques with cloned sequences to measure the titers of 23 mitochondrial and non-mitochondrial polyadenylate-containing [poly(A)+]RNA species during early development in the frog Xenopus laevis. These RNA species were some of the most abundant cellular poly(A)+ RNA species in early embryos. The concentrations of most of the non-mitochondrial (cytoplasmic) RNAs remained constant in embryos during the first 10 h of development, although the concentrations of a few species increased. During neurulation, we detected several new poly(A)+ RNA sequences in polysomes, and with one possible exception the accumulation of these sequences was largely the result of new synthesis or de novo polyadenylation and not due to the recruitment of nonpolysomal (free ribonucleoprotein) poly(A)+ RNA. We measured the subcellular distributions of these RNA species in polysomes and free ribonucleoproteins during early development. In gastrulae, non-mitochondrial RNAs were distributed differentially between the two cell fractions; some RNA species were represented more in free ribonucleoproteins, and others were represented less. By the neurula stage this differential distribution in polysomes and free ribonucleoproteins was less pronounced, and we found species almost entirely in polysomes. Some poly(A)+ RNA species transcribed from the mitochondrial genome were localized within the mitochondria and were mapped to discrete fragments of the mitochondrial genome. Much of this poly(A)+ RNA was transcribed from the ribosomal locus. Nonribosomal mitochondrial poly(A)+ RNA species became enriched in polysome-like structures after fertilization, with time courses similar to the time course of mobilization of cytoplasmic poly(A)+ RNA.  相似文献   

16.
Abstract— Incorporation of [3H]leucine into tubulin and total protein was examined using a polysomal system from newborn (1-day-old). young (10-day-old) and adult (3-month-old) rat brains and cerebral cortices. The rate of tubulin biosynthesis (specific radioactivity) was always lower than that of total protein biosynthesis. No significant differences in the specific radioactivities of the synthesized total proteins were found between the newborn and young brain polysomal system, although young cerebral cortical polysomes were less active than newborn cerebral cortical polysomes. The adult brain (or cerebral cortical) polysomes were less active, about 20-30% lower than the young brain (or cerebral cortical) polysomes. The incorporation of [3H]leucine into tubulin showed a progressive decrease in the polysomal systems isolated from the newborn, young and adult rat brains and cerebral cortices. These tendencies were similar in every cell sap taken from newborn, young and adult rat brain homogenates.
In order to examine the relative activities of free and bound polysomes of the developing rat brain in tubulin biosynthesis. double-labelling experiments were carried out. Labelled tubulin was purified by the assembly and disassembly method, followed by SDS gel electrophoresis, or by vinblastine precipitation method, followed by SDS gel electrophoresis; then identification by co-electrophoresis with native brain tubulin, molecular weight determination and demonstration of specific aggregation in the presence of GTP followed. Free and bound polysomes showed approximately similar activities during tubulin biosynthesis. Furthermore, relative activities of tubulin biosynthesis by free and bound polysomes did not significantly change during development.  相似文献   

17.
The program of gene expression during the life cycle of Dictyostelium discoideum has been assessed by molecular hybridization of cDNA probes with polysomal RNA extracted at the following different stages of development: vegetative growth, interphase (2.5 hr), aggregation (8 hr), postaggregation (12 hr), and preculmination (18 hr). Several different cDNA probes were used. Two probes were prepared from vegetative stage poly(A+) RNA, one representing all species present and the other enriched for abundant species. A third cDNA probe was prepared from preculmination stage polysomal RNA and a fourth probe consisted of the preculmination stage cDNA depleted in those species also present at the vegetative stage. Hybridization of the various probes with the different polysomal RNA preparations has revealed developmental changes in the mRNA populations. These changes were not detected in an aggregation less mutant under similar conditions of starvation. Abundant RNA species of vegetative cells were found to drop to low levels, especially during the aggregation period. Fifty percent by mass of the RNA present in polysomes at 18 hr is not present during vegetative growth. Some of the new RNA species appeared during interphase and the remaining during the postaggregation period. A gradual increase in the number of copies per cell of certain RNA species comprising both new species as well as some shared with vegetative cells was observed throughout development. Other results indicated that the composition of polysomal and cytoplasmic RNA is similar during vegetative growth but differs markedly at 18 hr of development. Also, cytoplasmic RNA at 18 hr contained, in addition to polysomal RNA, a large proportion by mass of nonpolysomal RNA similar to vegetative RNA. The number of polysomal RNA species detected by this analysis during vegetative growth and during the preculmination stage were estimated to be 3000 and 3700, respectively. The number of copies of these RNA species ranged between 30 and 2000 per cell during vegetative growth and 3 to 300 per cell in polysomes at 18 hr. Developmentally induced RNAs which were preferentially distributed among abundant and intermediate classes were estimated to number 700–900 species.  相似文献   

18.
The effect of growth on the efficiency of utilization of poly(A)-containing mRNA for translation has been investigated in microplasmodia of Physarum polycephalum. Measurement of the relative proportions of poly(A)-rich mRNA in polysomal and post-polysomal fractions isolated by sucrose density gradient centrifugation reveals that newly synthesized poly(A)-rich mRNA is present in increasing proportions in the polysomal region during exponential growth. However, the proportion of long-lived poly(A)-rich mRNA observed in actively-translating polysomes declines as starvation approaches. The ribonuclease content and morphology of the microplasmodia were monitored during growth and starvation in an effort to related this phenomenon to the onset of spherulation.  相似文献   

19.
We have used cell-free translation and two-dimensional gel electrophoresis to examine the complexities of the polysomal and cytoplasmic nonpolysomal [ribonucleo-protein (free RNP)] messenger ribonucleic acid (mRNA) populations of sea urchin eggs and embryos. We show that all species of mRNA detected by this method are represented in both the polysomes and free RNPs; essentially all messages present in polysomes are also in the free RNP fraction. However, the cytoplasmic distribution is clearly nonrandom since some templates are relatively concentrated in the free RNPs and others are predominantly in the polysomes. The polypeptides synthesized under the direction of unfertilized egg mRNA are qualitatively indistinguishable from those made by using embryonic mRNA, indicating that the complexity of the abundant class mRNA remains unchanged from egg through early development. However large changes in the abundancies of specific mRNAs occur, and changes are detected in the polysomal/free RNP distribution of some mRNAs through development. The differences in the realtive abundancies of specific mRNAs between polysomes and free RNPs and the developmental changes that take place indicate significant cytoplasmic selection of mRNA for translation. Three different forms of actin (termed alpha, beta, and gamma) were identified among the translation products. Messages for all three are present in the unfertilized egg and early cleavage embryo, yet the gamma form is preferentially located in the polysomes and the alpha and beta in the free RNPs. The relative concentrations of the three change greatly during development as do their relative distributions into polysomes and free RNPs. Examinations of in vivo labeled proteins largely support the in vitro findings. The results indicate that the synthesis of actin mRNAs increases greatly during development and that the expression of the actin mRNAs is partly controlled at the translation level during early development.  相似文献   

20.
We describe the accumulation and distribution of poly (A)+RNA during oogenesis and early embryogenesis as revealed by in situ hybridization with a radio-labeled poly (U) probe. The amount of poly (A)+RNA in nurse cell cytoplasm continuously increased untill mid-vitellogenic stage (st. 10), then decreased with the rapid increase of poly (A)+RNA in the oocyte (st. 11). The localization of poly (A)+RNA at stage 10 was in the anterior region of the oocyte, where it is connected by cytoplasmic bridge to the nurse cells. These observations indicate that most of the poly (A)+RNA synthesized in the nurse cells is transferred to the oocyte through the cytoplasmic bridges at stage 10–11. During the remainder of oogenesis (st. 11–14) and during preblastodermal embryogenesis, poly (A)+RNA was evenly distributed over the cytoplasm of oocytes and embryos. At blastoderm stage, poly(A)+RNA became concentrated in the peripheral region of embryos. Though the somatic nuclei of the blastoderm contained a detectable amount of poly (A)+ RNA, the pole cell nuclei did not. The cytoplasmic RNA visualised by acridine orange staining and the poly (A)+RNA detected by hybridization with [3H]poly (U) exhibited identical distributions during oogenesis and early embryogenesis. These observations provide a basis to assess the unique distributions of specific RNA sequences involved in early development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号