首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biomass availability and transportation are major challenges in establishing a large-scale biorefinery. The objective of this study was to assess the delivery cost of different combinations of multiple forms of lignocellulosic feedstocks including agricultural and woody biomass. Three types of biomass i.e., wheat straw, corn stover and forest biomass were considered in different forms such as loose biomass, bales/bundles, chopped/chipped and pellets. It was found that the delivery cost of a combination of woody and agricultural biomass feedstocks is lower than that for a single type of biomass. The delivery of agricultural residues as bales and woody biomass as chips is an economically attractive option with optimal combination of 30% bales and 70% wood chips to a biorefinery of capacity 5000 dry tonnes per day. The anticipated traffic congestions resulting from biomass supply to a large facility could be significantly reduced by increasing the density of biomass.  相似文献   

2.
SWAT watershed model simulated biomass yield and pollutant loadings were integrated with associated economic costs of farm production and transport to study two dedicated energy crops, switchgrass and Miscanthus, and corn stover, as feedstocks for a cellulosic biorefinery. A multi-level spatial optimization (MLSOPT) framework was employed to get spatially explicit cropping plans for a watershed under the assumption that the watershed supplies biomass to a hypothetical biorefinery considering both the biochemical and the thermochemical conversion pathways. Consistent with previous studies, the perennial grasses had higher biomass yield than corn stover, with considerably lower sediment, nitrogen, and phosphorus loadings, but their costs were higher. New insights were related to the tradeoffs between cost, feedstock production, and the level and form of environmental quality society faces as it implements the Renewable Fuel Standard. Economically, this involved calculating the farthest distance a biorefinery would be willing to drive to source corn residue before procuring a single unit of perennial grasses from productive agricultural soils.  相似文献   

3.
With cellulosic energy production from biomass becoming popular in renewable energy research, agricultural producers may be called upon to plant and collect corn stover or harvest switchgrass to supply feedstocks to nearby facilities. Determining the production and transportation cost to the producer of corn stover or switchgrass and the amount available within a given distance from the plant will result in a per metric ton cost the plant will need to pay producers in order to receive sufficient quantities of biomass. This research computes up-to-date biomass production costs using recent prices for all important cost components including seed, fertilizer, herbicide, mowing/shredding, raking, baling, storage, handling, and transportation. The cost estimates also include nutrient replacement for corn stover. The total per metric ton cost is a combination of these cost components depending on whether equipment is owned or custom hired, what baling options are used, the size of the farm, and the transport distance. Total costs per dry metric ton for biomass with a transportation distance of 60 km ranges between $63 and $75 for corn stover and $80 and $96 for switchgrass. Using the county quantity data and this cost information, we then estimate biomass supply curves for three Indiana coal-fired electric utilities. This supply framework can be applied to plants of any size, location, and type, such as future cellulosic ethanol plants. Finally, greenhouse gas emissions reductions are estimated from using biomass instead of coal for part of the utility energy and also the carbon tax required to make the biomass and coal costs equivalent. Depending on the assumed CO2 price, the use of biomass instead of coal is found to decrease overall costs in most cases.  相似文献   

4.
Biorefineries that plan to use switchgrass exclusively will encounter year-to-year variability in feedstock production. The economic success of the biorefinery will depend in part on the ability of the management team to strategically identify land for conversion from current use to the production of switchgrass enabling a flow of feedstock for the life of the biorefinery. The objective of this research is to determine the optimal quality, quantity, and location of land to lease while considering the spatial and temporal variability of switchgrass biomass yield. A calibrated biophysical simulation model was used to simulate switchgrass biomass yields for 50 years based on historical weather data from 1962 to 2011, for three land capability classes for each of 30 counties. Mathematical programming models were constructed and solved to determine the optimal leasing scheme for each of three strategies for a biorefinery that requires 2,000 Mg/day. As expected, a model based on the assumption that the average yield would be obtained in each year finds that production from land identified for leasing would be insufficient to fulfill the biorefinery’s needs in half of the years. In the absence of other sources of biomass, the feedstock shortage would require forced idling of the biorefinery for an average of 29.5 days during these years. Results of a strategy of leasing sufficient land to cover feedstock needs in the worst year from among 50 years for which data are available are compared to that of a strategy enabling year-to-year storage.  相似文献   

5.
Concerns over global climate change have led many jurisdictions to implement strategies aimed at reducing greenhouse gas levels. One example is the replacement of coal with dedicated energy crops, such as switchgrass and miscanthus. The yields and costs of these potentially valuable bio‐energy crops have been evaluated in only a few cases, and previous studies have not focused on climate change effects. This article assesses the potential yields and costs of growing switchgrass and miscanthus on the agricultural land base in Ontario, Canada, under different climate assumptions, using a GIS‐based integrated biophysical and economic simulation model. The model shows that miscanthus has a mean peak yield that is 88.5% (29.6 t ha?1 compared with 15.7 t ha?1) higher and a mean farm gate break‐even price that is 25.9% ($58.20 per tonne compared with $73.29 per tonne) lower than switchgrass. The impact of climate change on the yield and break‐even price of switchgrass and miscanthus is dependent upon the climate model. CGCM3.1 predicts that mean peak yields of switchgrass and miscanthus could drop by 17.8% and 14.9%, whereas CCSM3.0 predicts that mean yields could increase to 41.4% and 44.9%, from 2071 to 2100, in the A2 climate scenario respectively. Both crops show promise as biomass sources for bio‐energy production, but a changing global climate, along with cultivar and planting technology developments, could affect crop choices.  相似文献   

6.
Farm-Scale Production Cost of Switchgrass for Biomass   总被引:2,自引:0,他引:2  
The economic potential of cellulosic biomass from switchgrass has heretofore been evaluated using estimates of farm costs based on extrapolation from experimental data and budget estimates. The objective of the project reported here was to estimate the cost of production that would be experienced by farmers on commercial production situations. Switchgrass was produced as a biomass crop on commercial-scale fields by ten contracting farmers located from northern North Dakota to southern Nebraska. Results showed a wide range of yields and costs across the five production years and ten sites, with an overall average cost of $65.86 Mg?1 of biomass dry matter, and annualized yield of 5.0 Mg ha?1. The low-cost half of the producers were able to produce at an average cost of $51.95 Mg?1over the 5-year period. When projected to a full 10-year rotation, their cost fell further to $46.26 Mg?1. We conclude that substantial quantities of biomass feedstock could have been produced in this region at a cost of about $50 Mg?1 at the farm gate, which translates to about $0.13/l of ethanol. These results provide a more reliable benchmark for current commercial production costs as compared to other estimates, which range from $25 to $100 Mg?1.  相似文献   

7.
Zhu X  Yao Q 《Bioresource technology》2011,102(23):10936-10945
It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel.  相似文献   

8.
Cellulosic biofuel systems have the potential to significantly reduce the environmental impact of the world's transportation energy requirements. However, realizing this potential will require systems level thinking and scale integration. Until now, we have lacked modeling tools for studying the behavior of integrated cellulosic biofuel systems. In this paper, we describe a new research tool, the Biorefinery and Farm Integration Tool (BFIT) in which the production of fuel ethanol from cellulosic biomass is integrated with crop and animal (agricultural) production models. Uniting these three subsystems in a single combined model has allowed, for the first time, basic environmental and economic analysis of biomass production, possible secondary products, fertilizer production, and bioenergy production across various regions of the United States. Using BFIT, we simulate cellulosic ethanol production embedded in realistic agricultural landscapes in nine locations under a collection of farm management scenarios. This combined modeling approach permits analysis of economic profitability and highlights key areas for environmental improvement. These results show the advantages of introducing integrated biorefinery systems within agricultural landscapes. This is particularly true in the Midwest, which our results suggest is a good setting for the cellulosic ethanol industry. Specifically, results show that inclusion of cellulosic biofuel systems into existing agriculture enhances farm economics and reduces total landscape emissions. Model results also indicate a limited ethanol price effect from increased biomass transportation distance. Sensitivity analysis using BFIT revealed those variables having the strongest effects on the overall system performance, namely: biorefinery size, switchgrass yield, and biomass farm gate price.  相似文献   

9.
Ethanol from lignocellulosic biomass has the potential to contribute substantially to bioethanol for transportation. We have evaluated the technical and economic feasibility of producing ethanol from the carbohydrates in loblolly pine. In the process evaluated, prehydrolysis with dilute sulfuric acid was employed to hydrolyze hemicellulose and make the cellulose more accessible to hydrolysis by enzymes. Residual biomass from hydrolysis and extraction of carbohydrates was burned in a CHP plant to generate power and process steam. Our analysis indicates that ethanol can be produced at a cost of dollars 1.53/gal, based on a delivered wood cost of $63.80/dry metric ton and 75% conversion of the carbohydrates in wood to sugars for ethanol production. Improving the conversion of wood carbohydrates to sugars to 95% would reduce the production cost to dollars 1.29/gal. These values are for a plant producing 74 million gal/yr and 93 million gal/yr, respectively. At current feedstock prices, ethanol produced from loblolly pine would be competitive with ethanol produced from corn or other lignocellulosic biomass. Based on our analysis, discounted cash flow rates of return would be 18% and 25%, respectively for plants of this capacity.  相似文献   

10.
A preliminary cost estimate was made for two fermentation processes that increase the feed value of grass straw. In one method, straw hydrolyzed with dilute sulfuric acid is fermented by yeast. In the second method, the straw is treated with alkali, then inoculated with cellulolytic bacteria. Both processes increase the digestibility, protein content, and fat content of straw. Production costs estimated for plants processing 100 tons of straw/day by the two methods, were 80 to 88 dollars/ton. Capital costs were estimated at 5.2 million dollars for the acidhydrolysis yeast-fermentation process and at 3.1 million dollars for the alkalicellulolytic bacteria process. Labor, capital, and energy were significant cost factors for both processes. Caustic costs were important in the alkaline-treatment cellulolytic bacteria process.  相似文献   

11.
An economic feasibility study on four batch processes for the production of biodiesel ranging from 1452 tonnes/year (5000 l/day) to 14,520 tonnes/year (50,000 l/day) is conducted. The four processes assessed are the (1) KOH-W process, characterized by a homogeneous KOH catalyst and hot water purification process; (2) KOH-D process, characterized by a homogeneous KOH catalyst and vacuum FAME distillation process; (3) CaO-W process, characterized by a heterogeneous CaO catalyst and hot water purification process; and (4) CaO-D process, characterized by a heterogeneous CaO catalyst and vacuum FAME distillation process. The costs of the waste cooking oil, fixed costs, and manufacturing costs for producing 7260 tonnes/year (25,000 l/day) of biodiesel by means of the four processes are estimated to be $248–256, $194–232, and $584–641 per tonne of biodiesel, respectively. Among the four processes, the manufacturing costs involved in the CaO-W process are the lowest, in the range from 1452 tonnes/year to 14,520 tonnes/year.  相似文献   

12.
青贮对柳枝稷制取燃料乙醇转化过程的影响   总被引:1,自引:0,他引:1  
青贮是一种传统的生物质原料保存方法,广泛应用于纤维素乙醇炼制领域尚需要考察其对原料品质和下游乙醇转化过程的影响。文中以秋季(初、中和末)收割的柳枝稷为原料,通过青贮、高温水热(LHW)预处理、纤维素酶水解和同步糖化与发酵(SSF)实验对上述问题予以回答。结果显示,秋季初收割的柳枝稷以不同湿度青贮后pH均小于4.0,干重损失小于2%,各主要成分与青贮前相比无明显变化;LHW预处理中青贮样品半纤维素水解率普遍高于未贮存样品,但青贮同样使原料获得了更高的发酵抑制物产生水平;青贮柳枝稷葡萄糖、木糖和半乳糖产量(预处理+酶水解)高于未贮存柳枝稷;经过168 h的SSF,青贮样品乙醇浓度为12.1 g/L,未贮存的秋季初、秋季中和秋季末柳枝稷为底物的浓度分别为10.3 g/L、9.7 g/L和10.6 g/L。综上,青贮有助于提高柳枝稷LHW预处理效率、酶水解率和乙醇产量。  相似文献   

13.
Lignocellulose is the most abundant biomass on Earth, with an estimated 181.5 billion tonnes produced annually. Of the 8.2 billion tonnes that are currently used, about 7 billion tonnes are produced from dedicated agricultural, grass and forest land and another 1.2 billion tonnes stem from agricultural residues. Economic and environmentally efficient pathways for production and utilization of lignocellulose for chemical products and energy are needed to expand the bioeconomy. This opinion paper arose from the research network “Lignocellulose as new resource platform for novel materials and products” funded by the German federal state of Baden‐Württemberg and summarizes original research presented in this special issue. It first discusses how the supply of lignocellulosic biomass can be organized sustainably and suggests that perennial biomass crops (PBC) are likely to play an important role in future regional biomass supply to European lignocellulosic biorefineries. Dedicated PBC production has the advantage of delivering biomass with reliable quantity and quality. The tailoring of PBC quality through crop breeding and management can support the integration of lignocellulosic value chains. Two biorefinery concepts using lignocellulosic biomass are then compared and discussed: the syngas biorefinery and the lignocellulosic biorefinery. Syngas biorefineries are less sensitive to biomass qualities and are technically relatively advanced, but require high investments and large‐scale facilities to be economically feasible. Lignocellulosic biorefineries require multiple processing steps to separate the recalcitrant lignin from cellulose and hemicellulose and convert the intermediates into valuable products. The refining processes for high‐quality lignin and hemicellulose fractions still need to be further developed. A concept of a modular lignocellulosic biorefinery is presented that could be flexibly adapted for a range of feedstock and products by combining appropriate technologies either at the same location or in a decentralized form.  相似文献   

14.
MixAlco is a robust process that converts biomass to fuels and chemicals. A key feature of the MixAlco process is the fermentation, which employs a mixed culture of acid-forming microorganisms to convert biomass components (carbohydrates, proteins, and fats) to carboxylate salts. Subsequently, these intermediate salts are chemically converted to hydrocarbon fuels (gasoline, jet fuel, and diesel). This work focuses on process synthesis, simulation, integration, and cost estimation of the MixAlco process. For the base-case capacity of 40 dry tonne feedstock per hour, the total capital investment is US $5.54/annual gallon of hydrocarbon fuels (US $5.54/annual gallon of hydrocarbon fuels (US 3.79/annual gallon of ethanol equivalent), and the minimum selling price [with 10% return on investment (ROI), internal hydrogen production, and US $60/tonne biomass] is US $60/tonne biomass] is US 2.56/gal hydrocarbon, which is equivalent to US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US 1.76/gal hydrocarbon (US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US 65/bbl. At 40 tph, using the average tipping fee for municipal solid waste (US $45/dry tonne) and current price of external hydrogen (US $45/dry tonne) and current price of external hydrogen (US 1/kg), the minimum selling price is only US $1.24/gal hydrocarbon (US $1.24/gal hydrocarbon (US 0.85/gal ethanol equivalent).  相似文献   

15.
Cost-effective conversion of agricultural residues for renewable energy hinges not only on the material’s quality but also the biorefinery’s ability to reliably measure quality specifications. The ash content of biomass is one such specification, influencing pretreatment and disposal costs for the conversion facility and the overall value of a delivered lot of biomass. The biomass harvest process represents a primary pathway for accumulation of soil-derived ash within baled material. In this work, the influence of five collection techniques on the total ash content and variability of ash content within baled corn stover in southwest Kansas is discussed. The equipment tested included a mower for cutting the corn stover stubble, a basket rake, wheel rake, or shred flail to gather the stover, and a mixed or uniform in-feed baler for final collection. The results showed mean ash content to range from 11.5 to 28.2 % depending on operational choice. Resulting impacts on feedstock costs for a biochemical conversion process range from $5.38 to $22.30 Mg?1 based on the loss of convertible dry matter and ash disposal costs. Collection techniques that minimized soil contact (shred flail or nonmowed stubble) were shown to prevent excessive ash contamination, whereas more aggressive techniques (mowing and use of a wheel rake) caused greater soil disturbance and entrainment within the final baled material. Material sampling and testing were shown to become more difficult as within-bale ash variability increased, creating uncertainty around feedstock quality and the associated costs of ash mitigation.  相似文献   

16.
Targets for a considerable increase in electricity generation from renewables have been set in order to reduce greenhouse gas emissions and fossil fuel dependence. Extensive planting of willow, poplar and alder as energy crops has been planned for power generation plants which use wood as the fuel. The current trend is to use gasification or pyrolysis technology, but alternatively a case may be made for wood combustion, if wood becomes readily available. A range of wood-fired circulating fluidised bed combustion (CFBC) plants, using from 10 to 10,000 dry tonne equivalent (DTE)/day, was examined using the ECLIPSE process simulation package. Various factors, such as wood moisture content, harvest yield, afforestation level (AL) and discounted cash flow rate (DCF) were investigated to test their influence on the efficiency and the economics of the systems. Steam cycle conditions and wood moisture content were found to have the biggest effects on the system efficiencies; DCF and AL had the largest influences on the economics. Plants which could handle more than 500 dry tonnes/day could be economically viable; those using more than 1000 dry tonnes wood/day could be competitive with large-scale, conventional coal-fired plants, if sufficient wood were available.  相似文献   

17.
This study integrates a biophysical model with a county‐specific economic analysis of breakeven prices of bioenergy crop production to assess the biophysical and economic potential of biofuel production in the Midwestern United States. The bioenergy crops considered in this study include a genotype of Miscanthus, Miscanthus×giganteus, and the Cave‐in‐Rock breed of switchgrass (Panicum virgatum). The estimated average peak biomass yield for miscanthus in the Midwestern states ranges between 7 and 48 metric tons dry matter per hectare per year ( t DM ha?1 yr?1), while that for switchgrass is between 10 and 16 t DM ha?1 yr?1. With the exception of Minnesota and Wisconsin, where miscanthus yields are likely to be low due to cold soil temperatures, the yield of miscanthus is on average more than two times higher than yield of switchgrass. We find that the breakeven price, which includes the cost of producing the crop and the opportunity cost of land, of producing miscanthus ranges from $53 t?1 DM in Missouri to $153 t?1 DM in Minnesota in the low‐cost scenario. Corresponding costs for switchgrass are $88 t?1 DM in Missouri to $144 t?1 DM in Minnesota. In the high‐cost scenario, the lowest cost for miscanthus is $85 t?1 DM and for switchgrass is $118 t?1 DM, both in Missouri. These two scenarios differ in their assumptions about ease of establishing the perennial crops, nutrient requirements and harvesting costs and losses. The differences in the breakeven prices across states and across crops are mainly driven by bioenergy and row crop yields per hectare. Our results suggest that while high yields per unit of land of bioenergy crops are critical for the competitiveness of bioenergy feedstocks, the yields of the row crops they seek to displace are also an important consideration. Even high yielding crops, such as miscanthus, are likely to be economically attractive only in some locations in the Midwest given the high yields of corn and soybean in the region.  相似文献   

18.
Biomass is nearly carbon neutral and can be used for the production of various liquid fuels and chemicals. Decisions on biomass utilization should be based on the most economical and mature route. This study analyzes mountain pine beetle (MPB) killed wood as the feedstock for production of bio-ethanol and bio-oil and compares it with the direct combustion route to produce electricity. The MPB infestation of British Columbia's (BC), a western province of Canada, forest has reached an epidemic proportion and is spread over an area of 10 millionha. According to the current estimates of BC's Ministry of Forests and Range, about 1 billion m(3) of trees would be killed by MPB by 2013. This infestation would result in large scale loss of jobs and the standing dead trees are a fire hazard and if left unharvested will decay and release carbon back to the atmosphere. The cost of bio-ethanol production from a 2100dry tonne/day plant using the infested wood for two locations (one remote and other near the industry) in BC is in the range of C$0.37-C$0.40/l (C$1.40-C$1.51/gallon). Similarly, cost of bio-oil production from a 220dry tonne/day plant using the infested wood for same two locations in BC is in the range of C$0.27-C$0.29/l (C$1.02-C$1.09/gallon). The cost of producing electricity using this bio-oil is above C$100/MWh which is higher than the current power price in BC. This cost is also higher than the cost of production of electricity by direct combustion of infested wood in a boiler (C$68-C$74/MWh).  相似文献   

19.
Biomass cost, supply, and quality are critical parameters to consider when choosing feedstocks and locations for biorefineries. Biomass cost is dependent upon feedstock type, location, quantities available, logistics costs, and the quality specifications required by the biorefinery. Biomass quality depends upon feedstock type, growth conditions, weather, harvesting methods, storage conditions, and any preprocessing methods used to improve quality. Biomass quantity depends on location as well as growth conditions, weather, harvesting methods, and storage conditions. This study examines the interdependencies of these parameters and how they affect the biomass blends required by biomass depots and/or biorefineries to achieve the lowest cost feedstock with sufficient quality at the quantities needed for biorefinery operation. Four biomass depots were proposed in South Carolina to each produce 200,000 t of feedstock per year. These depots supply a centrally located 800,000 t biorefinery that converts the feedstocks to bio-oil using either catalyzed or uncatalyzed fast pyrolysis. The four depots utilize biomass based upon availability, but the feedstock or feedstock blend still met the minimum quality requirements for the biorefinery. Costs were minimized by using waste biomass resources such as construction and demolition waste, logging residues, and forest residuals. As necessary, preprocessing methods such as air classification and acid leaching were used to upgrade biomass quality. For both uncatalyzed and catalyzed fast pyrolysis, all four depots could produce biomass blends that met quality and quantity specifications at a cost lower than using a single feedstock.  相似文献   

20.
Lignocellulosic biomass such as agricultural and forestry residues and dedicated crops provides a low-cost and uniquely sustainable resource for production of many organic fuels and chemicals that can reduce greenhouse gas emissions, enhance energy security, improve the economy, dispose of problematic solid wastes, and improve air quality. A technoeconomic analysis of biologically processing lignocellulosics to ethanol is adapted to project the cost of making sugar intermediates for producing a range of such products, and sugar costs are predicted to drop with plant size as a result of economies of scale that outweigh increased biomass transport costs for facilities processing less than about 10,000 dry tons per day. Criteria are then reviewed for identifying promising chemicals in addition to fuel ethanol to make from these low cost cellulosic sugars. It is found that the large market for ethanol makes it possible to achieve economies of scale that reduce sugar costs, and coproducing chemicals promises greater profit margins or lower production costs for a given return on investment. Additionally, power can be sold at low prices without a significant impact on the selling price of sugars. However, manufacture of multiple products introduces additional technical, marketing, risk, scale-up, and other challenges that must be considered in refining of lignocellulosics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号