首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Yano  S Nakashima  Y Nozawa 《FEBS letters》1983,161(2):296-300
Exposure of rabbit neutrophils to formyl-methionyl-leucyl-phenylalanine (FMLP) induced the efflux of 45Ca2+ from pre-labeled cells which was almost complete within 30 s. On the other hand, FMLP-induced 45Ca2+ influx did not become apparent until 60 s after stimulation. When [3H]arachidonic acid-labeled neutrophils were stimulated with FMLP, the radioactivities in phosphatidylinositol 4,5-biphosphate (TPI) and phosphatidylinositol 4-phosphate (DPI) significantly decreased in parallel with the induction of 45Ca2+ efflux. In contrast, degradation of polyphosphoinositides in [3H]glycerol-labeled neutrophils was not significant until 60 s. Taken together, these results indicate that the early degradation of polyphosphoinositides, especially of those rich in arachidonic acid is closely associated with the initial efflux of calcium in FMLP-stimulated rabbit neutrophils. The study of resynthesis of polyphosphoinositides by measuring 32Pi incorporation into these lipids is also presented.  相似文献   

2.
1. Because cellular pools of phosphatidylinositol phosphate and phosphatidylinositol bisphosphate turn over rapidly during phospholipase C stimulation, the continuing production of inositol phosphates requires continuing synthesis from phosphatidylinositol of the polyphosphoinositides. In the present study in adrenal chromaffin cells, we examined the effects of nicotinic stimulation and depolarization in intact cells and micromolar Ca2+ in permeabilized cells on the levels of labeled polyphosphoinositides. We compared the effects to muscarinic stimulation in intact cells and GTP gamma S in permeabilized cells. 2. Nicotinic stimulation, elevated K+, and muscarinic stimulation cause similar production of inositol phosphates (D. A. Eberhard and R. W. Holz, J. Neurochem. 49:1634-1643, 1987). Nicotinic stimulation and elevated K+ but not muscarinic stimulation increased the levels of [3H]inositol-labeled phosphatidylinositol phosphate by 30-60% and [3H]phosphatidylinositol bisphosphate by 25-30%. The increase required Ca2+ in the medium, was maximal by 1-2 min, and was not preceded by an initial decrease in phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. 3. In digitonin-permeabilized cells, Ca2+ caused as much as a twofold increase in [3H]phosphatidylinositol phosphate and [3H]phosphatidylinositol bisphosphate. Similarly, Ca2+ enhanced the production of [32P]phosphatidylinositol phosphate and [32P]phosphatidylinositol bisphosphate in the presence of [gamma-32P]ATP. In contrast, GTP gamma S in permeabilized cells decreased polyphosphoinositides in the presence or absence of Ca2+. 4. The ability of Ca2+ to increase the levels of the polyphosphoinositides decayed with time after permeabilization. The effect of Ca2+ was increased when phosphoesterase and phospholipase C activities were inhibited by neomycin. 5. These observations suggest that Ca2+ specifically enhances polyphosphoinositide synthesis at the same time that it activates phospholipase C.  相似文献   

3.
Membranes were isolated from dispersed rat pancreatic islet cells by attachment to Sephadex beads. When these membranes were exposed to [gamma-32P]ATP, formation of 32P-labeled phosphatidate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate was observed. Carbamylcholine, added 10 s prior to lipid extraction, caused a dose-related fall in 32P-labeled phospholipids. The effect of the cholinergic agent was suppressed by atropine, ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, and verapamil, and simulated, in part, by an increase in Ca2+ concentration. When the membranes were derived from islet cells prelabeled with [U-14C]arachidonate, carbamylcholine stimulation, in addition to decreasing labeled polyphosphoinositides, was accompanied by an increased production of labeled diacylglycerol, without a concomitant increase in labeled phosphatidylinositol. These results indicate that activation of a plasma membrane-associated phospholipase C directed against polyphosphoinositides represents a primary event in the functional response of the pancreatic beta cell to cholinergic agents.  相似文献   

4.
Incubation of blowfly salivary gland homogenates with 30 microM [gamma-32P]ATP resulted in a rapid, Mg2+-dependent, synthesis of [32P]polyphosphoinositides and [32P]phosphatidic acid. 5-Methyltryptamine, in the presence of 10 microM guanosine 5'-(3-O-thio)trisphosphate, reduced the net accumulation of 32P label into phosphatidylinositol-4,5-P2 and phosphatidylinositol-4-P by 35 and 20%, respectively. 5-Methyltryptamine did not affect synthesis of [32P]phosphatidic acid. Phosphorylation of polyphosphoinositides was not affected by 5-methyltryptamine. In membranes labeled in vitro with [gamma-32P]ATP, 5-methyltryptamine stimulated a rapid breakdown of the [32P]polyphosphoinositides. These results indicate that in blowfly salivary gland homogenates, hormone stimulates breakdown of the newly synthesized polyphosphoinositides. In the presence of hormone, the rate of polyphosphoinositide synthesis does not compensate for the rate of polyphosphoinositide degradation.  相似文献   

5.
Cells of the murine mast-cell clone MC9 grown in suspension culture were sensitized with an anti-DNP (dinitrophenol) IgE and subsequently prelabelled by incubating with [32P]Pi. Stimulation of these cells with DNP-BSA (bovine serum albumin) caused marked decreases in [32P]polyphosphoinositides (but not [32P]phosphatidylinositol) with concomitant appearance of [32P]phosphatidic acid. Whereas phosphatidylinositol monophosphate levels returned to baseline values after prolonged stimulation, phosphatidylinositol bisphosphate levels remained depressed. Stimulation of sensitized MC9 cells with DNP-BSA increased rates of incorporation of [32P]Pi into other phospholipids in the order: phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine. In sensitized cells prelabelled with [3H]inositol, release of inositol monophosphate, inositol bisphosphate and inositol trisphosphate, was observed after stimulation with DNP-BSA. When Li+ was added to inhibit the phosphatase activity that hydrolysed the phosphomonoester bonds in the sugar phosphates, greater increases were observed in all three inositol phosphates, particularly in inositol trisphosphate. The IgE-stimulated release of inositol trisphosphate was independent of the presence of extracellular Ca2+. In addition, the Ca2+ ionophore A23187 caused neither the decrease in [32P]polyphosphoinositides nor the stimulation of the release of inositol phosphates. These results demonstrate that stimulation of the MC9 cell via its receptor for IgE causes increased phospholipid turnover, with effects on polyphosphoinositides predominating. These data support the hypothesis that hapten cross-bridging of IgE receptors stimulates phospholipase C activity, which may be an early event in stimulus-secretion coupling of mast cells. The results with the Ca2+ ionophore A23187 indicate that an increase in intracellular Ca2+ alone is not sufficient for activation of this enzyme.  相似文献   

6.
Basic or acidic forms of FGF, a potent mitogen for Bovine Epithelial Lens cells caused a rapid and transient rise in cytoplasmic Ca2+ followed by an increase in intracellular pH of 0.4 units. When cells were labeled at equilibrium with [3H]-inositol, no significant breakdown of polyphosphoinositides (in the presence of 20 mM LiCl) could be detected in response to 10-100 ng/ml of FGF. Similarly, fetal calf serum efficiently reinitiated DNA synthesis in these cells with little stimulation of polyphosphoinositide hydrolysis. In contrast, prostaglandin F2 alpha and angiotensin II, two weak mitogens for BEL cells, were found potent agonists of polyphosphoinositide breakdown. These results strongly indicate that the mitogenic action of FGF is not coupled to phospholipase C activation, a conclusion consistent with the fact that the FGF-induced [Ca2+]i rise is strictly dependent upon external Ca2+.  相似文献   

7.
Polyphosphoinositides in myelin   总被引:25,自引:14,他引:11       下载免费PDF全文
1. On fractionation of guinea-pig forebrain homogenates by differential and gradient-density centrifugation most of the polyphosphoinositides were recovered in the myelin-rich particles. 2. The phospholipids of pure preparations of myelin contained di- and tri-phosphoinositide in proportions 2-3 times greater than in the whole-brain phospholipids. 3. Di- and tri-phosphoinositide appeared in young rat brain during the period of myelination. 4. After the administration of [(32)P]phosphate to guinea pigs the labelling of the polyphosphoinositides in isolated pure myelin was as great as in the whole brain, whereas little synthesis of the other myelin phospholipids had occurred. 5. When brain subcellular fractions were incubated with [gamma-(32)P]ATP, some triphosphoinositide labelling occurred in the myelin-rich fraction whereas the active labelling of diphosphoinositide was localized mainly in the mitochondrial fraction. 6. The Na(+), K(+) and Mg(2+) plus Ca(2+) concentrations in purified myelin have been determined. The Mg(2+) plus Ca(2+) content present showed close acid-base equivalence to the polyphosphoinositides. 7. It is concluded that di- and tri-phosphoinositide are rapidly-metabolizing components of the myelin sheath or intimately associated structures.  相似文献   

8.
Carbamylcholine enhances the labeling of phosphatidate and phosphatidylinositol from 32Pi in nerve endings. Approximately 74% of labeled phosphatidate and 85% of labeled phosphatidylinositol produced on muscarinic stimulation are accounted for by tetraenoic species, as detected by argentation TLC. Incubation of membranes derived from nerve endings with [gamma-32P]ATP under conditions of phosphodiesteratic degradation of endogenous polyphosphoinositides resulted in increased labeling of phosphatidate. Approximately 78% of the newly formed phosphatidate was in a tetraenoic fraction. It is concluded that in muscarinically stimulated nerve endings, the diacylglycerol moiety is conserved following diacylglycerol release from polyphosphoinositides through its resynthesis to inositol lipid via phosphatidate.  相似文献   

9.
Incubation of rabbit erythrocyte ghosts at 25 °C with 1 mm [γ-32P]ATP and MgCl2 results in incorporation of 32P into diphosphoinositide and triphosphoinositide with initial rates of 15.6 and 1.8 nmol 32P/mg/h, respectively. Incorporation of 32P into diphosphoinositide plateaus after 20 min whereas incorporation into triphosphoinositide did not plateau until after 80 min. Diphosphoinositide and triphosphoinositide, prelabeled with 32P, did not undergo significant breakdown when incubated at 25 °C for 15 to 20 min. Turnover of 32P-labeled diphosphoinositide and triphosphoinositide was insignificant in the presence of MgCl2 and cold ATP. Diphosphoinositide is not phosphorylated to triphosphoinositide in the presence of Mg-ATP under conditions in which synthesis of these polyphosphoinositides can occur. In the presence of neomycin and Mg-ATP, labeled diphosphoinositide was rapidly phosphorylated to triphosphoinositide. Neomycin had no effect on labeled di- and triphosphoinositide content in the absence of ATP. Freeze-thawing the ghosts or the addition of Triton X-100 does not produce the same effect as neomycin. The results of this investigation suggest that diphosphoinositide and triphosphoinositide are normally synthesized from endogenous phosphatidylinositol in rabbit ghosts by separate enzymatic pathways. Neomycin an aminoglycoside which interacts with polyphosphoinositides may perturb the organization of substrates and kinase activities involved in polyphosphoinositide metabolism and alter these pathways.  相似文献   

10.
Incubation of rabbit erythrocytes with 32Pi resulted in labeling of membrane diphosphoinositide, triphosphoinositide, and phosphatidic acid. Hypotonic lysis at 37 degress C resulted in an extremely rapid breakdown of the labeled polyphosphoinositides. This breakdown could be retarded by lysis in the presence of EDTA and by lowering the temperature to 0 degrees thus allowing preparation of membranes with minimum breakdown of the labeled lipids. Rapid breakdown of di- and triphosphoinositide in isolated membranes could be initiated by Ca++ or to a lesser extent by Mg++ and prevented by detergents and by heating to 75 degrees C. Assay of radiolabeled lipid was carried out by a method which bypassed prior lipid extraction and which enabled sequential sampling of reactions at 10-second intervals. This method was more convenient than standard procedures and gave yields of di- and triphosphoinositide equivalent to that obtained by the method of Folch.  相似文献   

11.
Membranes prepared from DMSO-differentiated HL60 cells labeled with [3H]inositol hydrolyze polyphosphoinositides in a Ca2+-dependent manner, generating inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3). Incubation of membranes with GTP or GTP gamma S reduces the concentration of Ca2+ required for activation. This nucleotide effect is potentiated by formyl-Met-Leu-Phe (FMLP). Pertussis toxin inhibits FMLP-induced augmentation, but not the induction of IP2/IP3 formation by GTP or GTP gamma S. These results suggest that differentiated HL60 cells contain a membrane-associated phospholipase C that degrades polyphosphoinositides and that activation of this enzyme is mediated by at least two guanine nucleotide binding proteins, one of which is linked to FMLP receptors and is pertussis toxin sensitive.  相似文献   

12.
The polyphosphoinositide phosphodiesterase of erythrocyte membranes   总被引:94,自引:53,他引:41       下载免费PDF全文
1. A new assay procedure has been devised for measurement of the Ca(2+)-activated polyphosphoinositide phosphodiesterase (phosphatidylinositol polyphosphate phosphodiesterase) activity of erythrocyte ghosts. The ghosts are prepared from cells previously incubated with [(32)P]P(i). They are incubated under appropriate conditions for activation of the phosphodiesterase and the released (32)P-labelled inositol bisphosphate and inositol trisphosphate are separated by anion-exchange chromatography on small columns of Dowex-1 (formate form). When necessary, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate can be deacylated and the released phosphodiesters separated on the same columns. 2. The release of both inositol bisphosphate and inositol trisphosphate was rapid in human ghosts, with half of the labelled membrane-bound phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate broken down in only a few minutes in the presence of 0.5mm-Ca(2+). For both esters, optimum rates of release were seen at pH6.8-6.9. Mg(2+) did not provoke release of either ester. 3. Ca(2+) provoked rapid polyphosphoinositide breakdown in rabbit erythrocyte ghosts and a slower breakdown in rat ghosts. Erythrocyte ghosts from pig or ox showed no release of inositol phosphates when exposed to Ca(2+). 4. In the presence of Mg(2+), the inositol trisphosphate released from phosphatidylinositol 4,5-bisphosphate was rapidly converted into inositol bisphosphate by phosphomonoesterase activity. 5. Neomycin, an aminoglycoside antibiotic that interacts with polyphosphoinositides, inhibited the breakdown of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, with the latter process being appreciably more sensitive to the drug. Phenylmethanesulphonyl fluoride, an inhibitor of serine esterases that is said to inhibit phosphatidylinositol phosphodiesterase, had no effect on the activity of the erythrocyte polyphosphoinositide phosphodiesterase. 6. These observations are consistent with the notion that human, and probably rabbit and rat, erythrocyte membranes possess a single polyphosphoinositide phosphodiesterase that is activated by Ca(2+) and that attacks phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with equal facility. Inhibition of this activity by neomycin seems likely to be due to interactions between neomycin and the polyphosphoinositides, with the greater inhibition of phosphatidylinositol 4,5-bisphosphate breakdown consistent with the greater affinity of the drug for this lipid. In addition, erythrocyte membranes possess Mg(2+)-dependent phosphomonoesterase that converts inositol 1,4,5-triphosphate into inositol bisphosphate.  相似文献   

13.
The properties of the enzymes involved in Ca2+-stimulated breakdown of phosphatidylinositol 4'-phosphate (PIP), phosphatidylinositol 4',5'-bisphosphate (PIP2), and phosphatidic acid (PA) in rabbit erythrocyte ghosts were studied. At 25 degrees C, 1 to 180 microM Ca2+ rapidly stimulated the breakdown of PIP and PIP2, and maximal breakdown occurred within 10 minutes at all Ca2+ concentrations. The rate and the total amount of breakdown of PA, PIP, and PIP2 increased with Ca2+ concentration. MgCl2 inhibited the rate of Ca2+-stimulated breakdown of PIP and PIP2 at Ca2+ concentrations less than 10 microM, but did not have any appreciable effects at higher Ca2+ concentrations. MgCl2 also protected against Ca2+-stimulated breakdown of PA. In the presence and absence of 5 mM MgCl2, Ca2+ stimulated half-maximal breakdown of PIP and PIP2 at 2-3 microM under hypotonic and isotonic conditions. In the presence of 5 mM MgCl2, Ca2+-stimulated breakdown of PIP and PIP2 was associated with the release of Pi and inositol bisphosphate. In the absence of MgCl2, Ca2+ stimulated the release of 32P-labeled Pi, inositol bisphosphate, and inositol trisphosphate from labeled PIP, PIP2, and PA. Ca2+ increased phosphatidylinositol content and decreased PIP and PIP2 content in these membranes. The results of this investigation suggest that Ca2+ stimulates the breakdown of polyphosphoinositides by stimulating polyphosphoinositide phosphomonoesterase and phosphodiesterase activities in rabbit erythrocyte ghosts. These activities were activated by less than 3 microM Ca2+ in the presence of MgCl2 under hypotonic or isotonic conditions. These Ca2+-stimulated polyphosphoinositide phosphoesterase activities could therefore be active under physiological conditions in normal rabbit erythrocytes.  相似文献   

14.
Addition of Ca2+ to a plasma-membrane fraction derived from human or rabbit neutrophils led to the specific breakdown of polyphosphoinositides. The degradation products were identified as diacylglycerol and inositol bis- and tris-phosphate, thus demonstrating the presence of a Ca2+-activated phospholipase C. The newly generated diacylglycerol resembled the polyphosphoinositides in its fatty acid composition, and in the presence of MgATP2- it was converted into phosphatidate. These results therefore demonstrate the presence in neutrophil plasma membranes not only of polyphosphoinositide phosphodiesterase but also of diacylglycerol kinase.  相似文献   

15.
Saponin (5 to 25 micrograms/ml) produced a concentration-dependent decrease in the cellular content of total ATP and [32P]ATP in 32P-labeled human platelets. In platelets whose ATP had been profoundly decreased by saponin, Ca2+ produced phosphomonoesteratic cleavage of the polyphosphoinositides with a concomitant accumulation of phosphatidylinositol. Collagen still induced secretion of serotonin in platelets that had been treated with saponin in the presence or absence of Ca2+. This effect of collagen occurred in the absence of the formation of cyclooxygenase metabolites. In platelet permeabilized with saponin, agonist-induced secretion and aggregation seems to be unrelated to protein phosphorylation, breakdown of the inositol phospholipids by phospholipase C and formation of cyclooxygenase metabolites.  相似文献   

16.
Protein kinase C(PKC) is a Ca2+- and phospholipid-dependent protein kinase which can be activated by diacylglycerol, a product of polyphosphoinositide hydrolysis. In this report, we show that the polyphosphoinositides L-alpha-phosphatidylinositol 4-monophosphate (PI 4P) and L-alpha-phosphatidylinositol 4,5-diphosphate (PI 4.5DP) can serve as phospholipid cofactors of isolated rat brain PKC. The order of potency of the phosphoinositides in the activation of PKC, PI greater than PI 4P greater than PI 4,5DP, shows a negative correlation with the degree of acidity of the phospholipid head group, whether 1 mM Ca2+ or 200 nM TPA is present in the reaction assay mixture. Although the polyphosphoinositides are by themselves weaker activators of PKC than PI, small amounts of PI 4,5DP cause a two-fold enhancement of PKC in the presence of Ca2+ and PI. While the endogenous phospholipid cofactors of PKC remain to be identified, these results suggest that the small amounts of polyphosphoinositides which are present in cell membranes may play a direct role in the activation of PKC in vivo, by serving as phospholipid cofactors of the enzyme.  相似文献   

17.
The Ca2+ ionophore A23187 (0.2-5 microM) stimulates the phosphorylation of the substrates of protein kinase C (40,000 dalton protein) and myosin light chain kinase (20,000 dalton protein) in the presence or absence of cyclooxygenase inhibitors. In the presence of cyclooxygenase inhibitors or millimolar Ca2+ there is no stimulation of phospholipase C by A23187. Fingerprints of the 32P-labeled 40,000 dalton protein isolated from platelets that have been stimulated with A23187, thrombin, phorbol 12,13-dibutyrate and 1,2-didecanoylglycerol were identical. Higher concentrations of A23187 (1-5 microM) induced the loss of polyphosphoinositides through phosphomonoesterase activity.  相似文献   

18.
A rabbit heart membrane fraction enriched in sarcoplasmic reticulum was incubated in a reaction mixture containing [gamma-32P]ATP. The catalytic subunit of cyclic AMP-dependent protein kinase enhanced the 32P-labelling of both phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate. Ca2 +-calmodulin also increased the 32P-incorporation into both polyphosphoinositides. Upon SDS gel-electrophoretic analysis of the membrane proteins, phospholamban was found to be concurrently phosphorylated by the exogenous catalytic subunit as well as by an endogenous Ca2+-calmodulin-dependent protein kinase.  相似文献   

19.
The phosphorylation of red blood cell membrane fragments (RBCMF) during Ca++ transport was investigated. When red cell membrane fragments are incubated with [gamma-32P]ATP under the experimental condition which minimizes the phosphorylation of Na+-K+-ATPase, RBCMF are labeled in the presence of Mg++ without Ca++. When Ca++ is added, the labeling decreases due to dephosphorylation of RBCMF. The initial reaction of phosphorylation is reversed in the presence of excess ADP. The treatment of RBCMF with n-ethylmaleimide (NEM) does not interfere with the initial phosphorylation reaction, but blocks the dephosphorylation in the presence of Ca++. These data suggest that the enzymatic sequence of the Ca++ transport mechanism may be very similar to that of the Na+ transport mechanism.  相似文献   

20.
Both epidermal growth factor (EGF) and vanadate can activate 45Ca2+ influx into A431 epidermal carcinoma cells, without a detectable lag period possibly via a voltage-independent calcium channel. 22Na+/H+ exchange and 45Ca2+ uptake are mutually independent. Neither EGF nor vanadate induce any significant change in the steady-state levels of [1,3-3H]glycerol-labeled diacylglycerol, myo-[2-3H]inositol-labeled inositol trisphosphate or in 32P-labeled polyphosphoinositides or phosphatidic acid over the first 10 min of treatment, suggesting that the EGF receptor is not directly coupled to phosphatidylinositol turnover and that the two ion fluxes are not induced via a kinase C-dependent pathway. An increase in turnover of polyphosphoinositides can be detected in EGF-stimulated cells by nonequilibrium labeling with [32P]phosphate, but the increase shows a lag of about 1 min under the conditions used to detect 45Ca2+ influx. Chelation of free Ca2+ decreases but does not abolish the EGF-stimulated turnover. Preincubation with tetradecanoylphorbol acetate or 1-oleoyl-2-acetylglycerol inhibits the increase in 45Ca2+ uptake by both EGF and vanadate. Tetradecanoylphorbol acetate alone does not alter the basal rate of influx when added together with 45Ca2+. Surprisingly, the activation by vanadate and its inhibition by phorbol 12-myristate 13-acetate are unaffected by down-regulation of the EGF receptors through prior incubation with growth factor. Therefore, in A431 cells the activation of Na+/H+ exchange and Ca2+ influx appear to be independent of phosphatidylinositol turnover, and the EGF receptor does not itself function as a Ca2+ channel. Vanadate apparently activates influx through a mechanism distinct from or distal to the EGF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号