首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Urocanase, purified by classical methods [Keul, V., Kaeppeli, F., Ghosh, C., Krebs, T., Robinson, J. A. and Rétey, J. (1979) J. Biol. Chem. 254, 843-851] from Pseudomonas putida was submitted to high-performance liquid chromatography on a TSK-DEAE column. The enzyme was eluted in three resolved peaks (A, B and C) exhibiting specific activities of 3.4 U/mg, 1.85 U/mg and 0.4 U/mg, respectively. 2. The difference spectra of peaks B and A as well as of C and A showed maxima at 330 nm. 3. Irradiation of peaks B and C at 320 nm resulted in an increase of urocanase activity by 45% and 400%, respectively. Peak A could not be photoactivated. Rechromatography of the photoactivated peaks B and C on the TSK-DEAE column confirmed their partial transformation into peak A. 4. Spectroscopic methods for quantitative protein determination were adapted to urocanase. The stoichiometry of bound NAD+/urocanase (form A) was determined to be 1.75 by enzymic analysis of the free NAD+ released upon acid denaturation of the holoenzyme. A similar stoichiometry (1.8-1.9) was found for all three forms (A, B and C) by biosynthetic incorporation of [7-14C]nicotinate into urocanase using a nicotinate auxotrophic mutant of P. putida. 5. Form A of urocanase showed, after treatment with NaBH4 up to 50% inhibition, an elution pattern (TSK-DEAE column) similar to a mixture of forms A, B and C in the approximate ratio of 1:2:1. None of these forms could be photoactivated. 6. We conclude that form A of the urocanase dimer contains two intact NAD+ molecules. In form B one of the two subunits contains an NAD+-nucleophile adduct which is present in both subunits of form C. Full urocanase activity requires intact NAD+ in both subunits. Intact NAD+ can be regenerated from the adduct but not from the reduced form by photolysis. The two subunits of urocanase are independent both in their catalytic activity and in modification reactions.  相似文献   

2.
Inositol trisphosphate (IP3) was previously shown to release Ca2+ from a nonmitochondrial store in sea urchin eggs. In this study, egg homogenates and purified microsomes were monitored with either fura 2 or Ca2+-sensitive minielectrodes to determine whether other stimuli would induce Ca2+ release. Pyridine nucleotides (whose concentrations are known to change at fertilization) were found to release nearly as much Ca2+ as did IP3. Average releases/ml of homogenate were: 0.6 microM IP3, 10.9 nmol of Ca2+; 50 microM NADP, 7.3 nmol of Ca2+; and 100 microM NAD, 6.5 nmol of Ca2+ (n = 6). Specificity was demonstrated by screening a series of other phosphorylated metabolites, and none was found to reproducibly release Ca2+. Calcium release induced by IP3 or NADP was immediate, whereas a lag of 1-4 min occurred with NAD. This lag before NAD-induced Ca2+ release led to the discovery that a soluble egg factor (Mr greater than 100,000) converts NAD into a highly active metabolite that releases Ca2+ without a lag. The NAD metabolite (E-NAD) was purified to homogeneity by high pressure liquid chromatography and produced half-maximal Ca2+ release at about 40 nM. Injection of E-NAD into intact eggs produced both an increase in intracellular Ca2+ (as assayed with indo-1) and a cortical reaction. Following Ca2+ release by each of the active agents (IP3, NAD, and NADP), the homogenates resequestered the released Ca2+ but were desensitized to further addition of the same agent. A series of desensitization experiments showed that homogenates desensitized to any two of these agents still responded to the third, indicating the presence of three independent Ca2+ release mechanisms. This is further supported by experiments using Percoll density gradient centrifugation in which NADP-sensitive microsomes were partially separated from those sensitive to IP3 and NAD.  相似文献   

3.
Functionally intact mitochondria from rabbit reticulocytes are characterized by a low NAD+ level after the preparation (0.29 nmoles NAD+ + NADH/mg protein). They are apparently impermeable for NADH and exhibit a slow net uptake of NAD+. From the increase of O2-uptake in state 3 and the increase of NADH concentration in state 4 of respiration after the addition of NAD+ we concluded that 3--10 min are necessary for the saturation with NAD+ at 23 degrees C. 2mM NAD+ extramitochondrially are not sufficient to saturate the mitochondria with NADH and probably NAD+, too. Because of the net uptake of NAD+ we assume that reticulocyte mitochondria lose NAD+ during their preparation. If they are incubated with the physiological concentration of 300 micrometer NAD+, which was found in reticulocytes, a value of 1.9 nmoles NAD+ + NADH mg protein was calculated. At an extramitochondrial NAD+ concentration of 300 micrometer, reticulocyte mitochondria exhibit an almost maximal O2-uptake in the presence of oxaloacetate or alpha-ketoglutarate. It is concluded that the mitochondria in intact reticulocytes contain the "normal" complement of NAD+ + NADH.  相似文献   

4.
1. The 3alpha-hydroxysteroid: NAD+-oxidoreductase (EC 1.1.1.50) from Pseudomonas testosteroni (ATCC 11996) has been purified by affinity chromatography on Sepharose 4B using glycocholic acid as ligand covalently bound through its carboxyl group to the ethylenediamine spacer. 2. The attachment of the enzyme to the substrate-containing matrix is greatly enhanced by the presence of NAD+ suggesting that this enzyme has a compulsory ordered mechanism where NAD+ binds to the enzyme before the steroid. 3. A NAD+-independent interaction between the enzyme and the ligand was also found. This interaction was mainly hydrophobic and interfered with the NAD+-dependent binding. The NAD+-independent interaction was reduced by N,N-dimethylformamide. 4. By using the affinity column in the presence of 10% N,N-dimethylformamide, highly purified enzyme, as judged from polyacrylamide gel electrophoresis, could be obtained in one step from crude bacterial extracts.  相似文献   

5.
Native rat liver methylmalonate semialdehyde dehydrogenase was proteolyzed by lysylendopeptidase C, chymotrypsin, and trypsin to generate different cleavage fragments of molecular masses: 50, 8, 55, 44, 39, 53, 45, and 40 kDa. A proteolytic cleavage map of MMSDH was constructed based on sequencing data and a comparison of appearance and degradation rates of the different protein fragments as shown by SDS-PAGE. NAD+ was highly effective as a protector against proteolysis in both the N-terminal and the C-terminal parts of the intact enzyme. NADH did not efficiently protect the intact enzyme; however, it stabilized proteolytic fragment L50 from further degradation. This suggests that the NAD(+)-binding domain is not destroyed by cleavage of the N-terminal part of MMSDH. CoA had no effect on the proteolytic cleavage patterns of MMSDH. However, CoA esters reduced the protective effect of NAD+ with an order of effectiveness of acetyl-CoA greater than propionyl-CoA greater than butyryl-CoA. p-Nitrophenyl acetate, substrate for esterase activity by the enzyme, partially prevented the protective effect of NAD+ against proteolysis. These results suggest that S-acylation of the enzyme prevents a stabilizing conformational change induced in MMSDH by NAD+ binding.  相似文献   

6.
Isolated potato (Solanum tuberosum) tuber mitochondria purified by isopycnic centrifugation in density gradients of Percoll were found to be highly intact, to be devoid of extramitochondrial contaminations and to retain a high rate of O2 consumption. When suspended in a medium that avoided rupture of the outer membrane, intact purified mitochondria progressively lost their NAD+ content by passive diffusion. This led to a slow decrease of oxoglutarate-dependent O2 consumption by isolated mitochondria. Addition of NAD+ to the medium restored the initial State-3 rate of oxoglutarate oxidation. The rate of NAD+ accumulation in the matrix space was concentration-dependent, exhibited Michaelis-Menten kinetics and was strongly inhibited by the analogue N-4-azido-2-nitrophenyl-4-aminobutyryl-NAD+.  相似文献   

7.
Glutamate dehydrogenase (L-glutamate:NAD+ oxidoreductase (deaminating); EC 1.4.1.2) has been purified from Peptostreptococcus asaccharolyticus in a single step using dye-ligand chromatography. The enzyme (GDH) was present in high yields and was stabilized in crude extracts. A subunit molecular weight of 49000 +/- 500 was determined by SDS polyacrylamide gel electrophoresis and six bands were obtained after cross-linking the subunits with dimethyl suberimidate. This bacterial GDH was predominantly NAD+-linked, but was able to utilize both NADP+ and NADPH at 4% of the rates with NAD+ and NADH, respectively. An investigation of the amino acid specificity revealed some similarities with GDH from mammalian sources and some clear differences. The values of apparent Km for the substrates ammonia, 2-oxoglutarate, NADH, NAD+ and glutamate were 18.4, 0.82, 0.066, 0.031 and 6 mM, respectively. The P. asaccharolyticus GDH was not regulated by purine nucleotides, but was subject to strong inhibition with increasing ionic strength.  相似文献   

8.
Lactate dehydrogenase in intact erythrocytes was studied by observing isotope exchange between lactate and pyruvate by p.m.r. The inhibition of the enzyme in intact cells by both oxalate and pyruvate was found to be similar to that of the purified enzyme. The activity of the enzyme in intact cells indicates that the free solution NAD+ + NADH concentration in erythrocytes is about 10 microM whereas the total extractable NAD+ + NADH is about 80 nmol/ml of cell water.  相似文献   

9.
An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups.  相似文献   

10.
Cholera toxin containing intact A chain (Mr = 29,000) was isolated, and its enzymic properties were characterized. The "unnicked" form of the toxin, produced by a protease-deficient, hypertoxinogenic mutant of Vibrio cholerae 569B, had greatly reduced activity in catalyzing the NAD+-glycohydrolase and ADP-ribosyltransferase reactions as compared to the naturally nicked form commonly isolated. In the latter, the intact A chain has been cleaved by bacterial proteases to yield disulfide-linked A1 and A2 chains (Mr = 23,000 and 6,000, respectively). Digestion of unnicked toxin with trypsin or elastase yielded a nicked form similar to or identical with the naturally nicked toxin, but chymotryptic digestion did not. Disulfide bond reduction was necessary for expression of enzymic activity by naturally nicked or trypsin-nicked toxin, or the A1A2 protomer. Fractionation of thiol-treated, nicked cholera toxin by ion exchange, molecular exclusion, or affinity chromatography gave results suggesting that the reduced toxin displays enzymic activity while remaining structurally intact.  相似文献   

11.
Cholera toxin stimulates adenylate cyclase in rat liver after intravenous injection. The stimulation follows a short latent period of 10min, and maximum stimulation was attained at 120min. Half-maximal stimulation was achieved at 35min. In contrast with this lengthy time course in the intact cell, adenylate cyclase in broken-cell preparations of rat liver in vitro were maximally stimulated by cholera toxin (in the presence of NAD+) in 20min with half-maximal stimulation in 8min. Binding of cholera toxin to cell membranes by the B subunits is followed by translocation of the A subunit into the cell or cell membrane, and separation of the A1 polypeptide chain from the A2 chain by disulphide-bond reduction, and finally activation of adenylate cyclase by the A1 chain and NAD+. As the binding of cholera toxin is rapid, two possible rate-limiting steps could be the determinants of the long time course of action. These are translocation of the A1 chain from the outside of the cell membrane to its site of action (this includes the time required for separation from the whole toxin) or the availability of NAD+ for activation. When NAD+ concentrations in rat liver were elevated 4-fold, by the administration of nicotinamide, no change in the rate of activation of adenylate cyclase by cholera toxin was observed. Thus the intracellular concentration of NAD+ is not rate-limiting and the major rate-limiting determinant in intact cells must be between the time of toxin binding to the cell membrane and the appearance of subunit A1 at the enzyme site.  相似文献   

12.
The relationship between the NAD-metabolism and the induction of the tyrosine aminotransferase was studied. The content of NAD+ + NADH differs markedly from organ to organ. The highest values can be found in the liver. In intact animals tryptophan leads to an increase of NAD in liver and kidney, but not in brain and spleen. Nicotinamide, on the other hand, induces NAD synthesis in all the organs tested. In adrenalectomized animals, however, there is practically no rise of the NAD content after application of tryptophan contrary to the effect of nicotinamide. The enzyme tyrosine aminotransferase can be induced in intact animals by nicotinamide and tryptophan. This effect is much less pronounced in adrenalectomized animals. In adrenalectomized animals the induction of the tyrosine aminotransferase by tryptophan is markedly elevated by caffeine and theophylline. Under these conditions there is a significant increase of the NAD content as well. The tryptophan promoted induction of the tyrosine aminotransferase is influenced by inhibitors of the ADPR-transferase. The data presented give further evidence that the NAD adenoribosylation metabolism is involved in the induction of the tyrosine aminotransferase.  相似文献   

13.
A method for the synthesis of N6-(2-aminoethyl)-NAD+ is given. The binding of this NAD+ derivative to different soluble and insoluble supports and the direct coupling of NAD+ to epoxyactivated Sepharose are described. Proofs are given that NAD+ is bound through the amino group in 6- position and the NAD+ derivative through the aliphatic amino group of the side chain. Non-enzymic reduction of the bound coenzyme to an almost quantitative extent is possible in all cases, but the enzymic reduction is largely influenced by the support. While N6-(2-aminoethyl)-NAD+ coupled to soluble dextran is nearly completely reducible by different dehydrogenases with a velocity of about 40% of that for free NAD+, the coenzyme bound to different insoluble matrices is very slowly reduced. Only 5% of the coenzyme derivative bound to BrCN-activated Sepharose are reducible, but 40% when it is bound through a spacer. From capacity determinations evidence is given that, even in this coenzyme gel, only those coenzyme molecules are useful in affinity chromatography which are on the surface of the gel grains; it is supposed that this may be due to the slow diffusion of an enzyme into the inner parts of an affinity gel.  相似文献   

14.
A simple method, involving NAD+-Sepharose chromatography, was developed for the preparation of snake venom phosphodiesterase (EC 3.1.4.1) almost free from 5'-Nucleotidase (EC 3.1.3.5). Using an NAD+-Sepharose 4B column, phosphodiesterase was eluted in the unadsorbed fraction, whereas 5'nucleotidase was strongly adsorbed. The latter enzyme was desorbed when 0.2 M sodium bicarbonate buffer containing 1mM beta-NADH was used as a solvent. The affinity column could be used at least four times without any decrease of potency, and the method was applicable for the preparation of phosphodiesterase from the venoms of rattlesnake (Crotalus adamanteus) and Japanese mamushi (Agkistrodan halys blomhoffi).  相似文献   

15.
Two inhibitors of lactate dehydrogenase generated during NADH storage have been isolated by chromatography. One is a dimer of the dinucleotide where the AMP moiety is unmodified. The other is also generated from NAD+ in the presence of a high concentration of phosphate ions at alkaline pH. This inhibitor was proved to be the addition compound of one phosphate group to position C-4 of the nicotinamide ring of NAD+ by NMR spectroscopy, enzymatic cleavage, and dissociation to NAD+ at neutral pH. This compound is a competitive inhibitor with respect to NAD+ in the presence of the lactate dehydrogenase with a Ki of 2 X 10(-7) M. The interaction of this inhibitor with lactate dehydrogenase is discussed relative to the structure of this enzyme.  相似文献   

16.
Far red light irradiation of intact corn seedlings (Zea maysL.) has neither an effect on the cellular distribution nor onthe Ca2+, calmodulin-dependence of the NAD kinase (EC 2.7.1.23 [EC] ).The enzyme is located in the outer mitochondrial membrane andits activity is totally dependent on the presence of both Ca2+and calmodulin, independently of the illumination. In intactmitochondria and the presence of calmodulin the enzyme activityincreases linearly from 100 nM to 1 mM. At 100 µM Ca2+halfmaximal activation occurs at about 10 nM calmodulin. After solubilizationand purification by calmodulin-Sepharose chromatography theCa2+dependence of the enzyme changes. The activation reachesa plateau at about 100 µM Ca2+ and half maximal activationoccurs at about 6 µM Ca2+. On the other hand irradiationof intact corn seedlings as well as an increase of the cellularCa2+ concentration leads to an increase of NADP and a correspondingdecrease of NAD. Based on these data we suggest that the lighteffect on the NAD kinase activity is mediated by Ca2+ and calmodulin. (Received May 31, 1986; Accepted July 14, 1986)  相似文献   

17.
Utilization and metabolism of NAD by Haemophilus parainfluenzae   总被引:2,自引:0,他引:2  
The utilization of exogenous nicotinamide adenine dinucleotide (NAD) by Haemophilus parainfluenzae was studied in suspensions of whole cells using radiolabelled NAD, nicotinamide mononucleotide (NMN), and nicotinamide ribonucleoside (NR). The utilization of these compounds by H. parainfluenzae has the following characteristics. (1) NAD is not taken up intact, but rather is degraded to NMN or NR prior to internalization. (2) Uptake is carrier-mediated and energy-dependent with saturation kinetics. (3) There is specificity for the beta-configuration of the glycopyridine linkage. (4) An intact carboxamide groups is required on the pyridine ring. The intracellular metabolism of NAD was studied in crude cell extracts and in whole cells using carbonyl-14C-labelled NR, NMN, NAD, nicotinamide, and nicotinic acid as substrates in separate experiments. A synthetic pathway from NR through NMN to NAD that requires Mg2+ and ATP was demonstrated. Nicotinamide was found as an end-product of NAD degradation. Nicotinic acid mononucleotide and nicotinic acid adenine dinucleotide were not found as intermediates. The NAD synthetic pathway in H. parainfluenzae differs from the Preiss-Handler pathway and the pyridine nucleotide cycles described in other bacteria.  相似文献   

18.
ADP-ribosyl cyclase activities in cultured rat astrocytes were examined by using TLC for separation of enzymatic products. A relatively high rate of [3H]cyclic ADP-ribose production converted from [3H]NAD+ by ADP-ribosyl cyclase (2.015+/-0.554 nmol/min/mg of protein) was detected in the crude membrane fraction of astrocytes, which contained approximately 50% of the total cyclase activity in astrocytes. The formation rate of [3H]ADP-ribose from cyclic ADP-ribose by cyclic ADP-ribose hydrolase and/or from NAD+ by NAD glycohydrolase was low and enriched in the cytosolic fraction. Although NAD+ in the extracellular medium was metabolized to cyclic ADP-ribose by incubating cultures of intact astrocytes, the presence of Triton X-100 in the medium for permeabilizing cells increased cyclic ADP-ribose production three times as much. Isoproterenol and GTP increased [3H]cyclic ADP-ribose formation in crude membrane-associated cyclase activity. This isoproterenol-induced stimulation of membrane-associated ADP-ribosyl cyclase activity was confirmed by cyclic GDP-ribose formation fluorometrically. This stimulatory action was blocked by prior treatment of cells with cholera toxin but not with pertussis toxin. These results suggest that ADP-ribosyl cyclase in astrocytes has both extracellular and intracellular actions and that signals of beta-adrenergic stimulation are transduced to membrane-bound ADP-ribosyl cyclase via G proteins within cell surface membranes of astrocytes.  相似文献   

19.
A method for the rapid determination of the specific activity of NaB3H4 is presented. NaB3H4 is used to reduce NAD+ to [3H]NADH, which is then isolated by anion exchange chromatography. The specific activity of the NaB3H4 is calculated from measurements of radioactivity and absorbance (340 nm) in the [3H]NADH fractions.  相似文献   

20.
O2 uptake by potato and cauliflower bud mitochondria oxidizing malate was progressively inhibited as the pH of the external medium was increased, in response to accumulation of oxaloacetate. Adding 0.5 mM coenzyme A to the medium reversed this trend by stimulating intramitochondrial NAD-linked malic enzyme at alkaline pH. In intact potato mitochondria, coenzyme A stimulation of malic enzyme was not observed when the external pH was above 7.5; in cauliflower mitochondria, coenzyme A stimulated even at pH 8. This difference in the response of intact mitochondria was attributed to an inherent difference in the properties of malic enzyme from the two tissues. Malic enzyme solubilized from potato mitochondria was inactive at pH values above 7.8, while that from cauliflower mitochondria retained its activity at pH 8 in the presence of coenzyme A. In potato mitochondria, coenzyme A stimulation of O2 uptake at alkaline pH was only observed when NAD+ was also provided exogenously. The results show that coenzyme A can be taken up by intact mitochondria and that pH, NAD+, and coenzyme A levels in the matrix act together to regulate malate oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号