首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three unique parathion hydrolases were purified from gram-negative bacterial isolates and characterized. All three purified enzymes had roughly comparable affinities for ethyl parathion and had broad temperature optima at ca. 40 degrees C. The membrane-bound hydrolase of Flavobacterium sp. strain ATCC 27551 was composed of a single subunit of approximately 35,000 daltons (Da) and was inhibited by sulfhydryl reagents such as dithiothreitol (DTT) and by metal salts such as CuCl2. The cytosolic hydrolase of strain B-1 was composed of a single subunit of approximately 43,000 Da and was stimulated by DTT and inhibited by CuCl2. The membrane-bound hydrolase of strain SC was composed of four identical subunits of 67,000 Da and was inhibited by DTT and stimulated by CuCl2. The substrate ranges of the three enzymes also differed, as evidenced by their relative affinities for parathion and the related organophosphate insecticide O-ethyl-O-4-nitrophenyl phenylphosphonothioate (EPN). The B-1 hydrolase displayed equal affinity for both compounds, the Flavobacterium enzyme showed twofold-lower affinity for EPN than for parathion, and the SC hydrolase displayed no activity toward EPN. The range in characteristics of these three enzymes can be exploited in different waste disposal strategies.  相似文献   

2.
A heterologous phosphotriesterase (parathion hydrolase), previously cloned from a Flavobacterium species into Streptomyces lividans, was secreted at high levels and purified to homogeneity. N-terminal analysis revealed that it had been processed in the same manner as the native membrane-bound Flavobacterium hydrolase. The enzyme consisted of a single polypeptide with an apparent molecular weight of 35,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Substrate specificity studies showed Kms of 68 microM for parathion, 46 microM for O-ethyl O-p-nitrophenyl phenylphosphonothioate, 599 microM for methyl parathion, and 357 microM for p-nitrophenyl ethyl(phenyl)phosphinate. Temperature and pH optima were 45 degrees C and 9.0, respectively. The purified enzyme was inhibited by 1 mM dithiothreitol and 1 mM CuSO4. After chelation and inactivation by o-phenanthroline, however, activity could be partially restored by 1 mM CuCl or 1 mM CuSO4. The results showed that the purified recombinant parathion hydrolase has the same characteristics as the native Flavobacterium hydrolase. This system provides a source of milligram quantities of parathion hydrolase for future structural and mechanism studies and has the potential to be used in toxic waste treatment strategies.  相似文献   

3.
A heterologous phosphotriesterase (parathion hydrolase), previously cloned from a Flavobacterium species into Streptomyces lividans, was secreted at high levels and purified to homogeneity. N-terminal analysis revealed that it had been processed in the same manner as the native membrane-bound Flavobacterium hydrolase. The enzyme consisted of a single polypeptide with an apparent molecular weight of 35,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Substrate specificity studies showed Kms of 68 microM for parathion, 46 microM for O-ethyl O-p-nitrophenyl phenylphosphonothioate, 599 microM for methyl parathion, and 357 microM for p-nitrophenyl ethyl(phenyl)phosphinate. Temperature and pH optima were 45 degrees C and 9.0, respectively. The purified enzyme was inhibited by 1 mM dithiothreitol and 1 mM CuSO4. After chelation and inactivation by o-phenanthroline, however, activity could be partially restored by 1 mM CuCl or 1 mM CuSO4. The results showed that the purified recombinant parathion hydrolase has the same characteristics as the native Flavobacterium hydrolase. This system provides a source of milligram quantities of parathion hydrolase for future structural and mechanism studies and has the potential to be used in toxic waste treatment strategies.  相似文献   

4.
We characterized a novel organophosphorus hydrolase (OPH) activity expressed by Nocardiodes simplex NRRL B-24074, a member of a coumaphos-degrading microbial consortium from cattle dip waste. Like the previously characterized OPH from Nocardia sp. strain B- (NRRL B- 16944), OPH activity in N. simplex is located in the cytoplasm and is expressed constitutively. The purified enzyme is monomeric, has a native molecular size of 45,000 Da and has a specific activity toward ethyl parathion of 33 micromole/min x mg protein. Km constants for the enzyme with the structurally related organophosphate pesticides ethyl parathion and EPN were 100 microM and 345 microM, respectively. Although OPH activity in extracts did not require the addition of divalent cations, the purified enzyme lost activity during dialysis against phosphate buffer and this activity could be restored after incubation in buffer containing either CoSO4 or CuSO4. Our results suggest that OPH activity in N. simplex is distinct from other known OPHs and that the responsible gene is unrelated to known genes.  相似文献   

5.
The sequence of a 1,693-base-pair plasmid DNA fragment from Flavobacterium sp. strain ATCC 27551 containing the parathion hydrolase gene (opd) was determined. Within this sequence, there is only one open reading frame large enough to encode the 35,000-dalton membrane-associated hydrolase protein purified from Flavobacterium extracts. Amino-terminal sequence analysis of the purified Flavobacterium hydrolase demonstrated that serine is the amino-terminal residue of the hydrolase protein. The amino-terminal serine corresponds to a TCG codon located 87 base pairs downstream of the presumptive ATG initiation codon in the nucleotide sequence. The amino acid composition of the purified protein agrees well with that predicted from the nucleotide sequence, using serine as the amino-terminal residue. These data suggest that the parathion hydrolase protein is processed at its amino terminus in Flavobacterium sp. Construction in Escherichia coli of a lacZ-opd gene fusion in which the first 33 amino-terminal residues of opd were replaced by the first 5 residues of lacZ resulted in the production of an active hydrolase identical in molecular mass to the hydrolase isolated from Flavobacterium sp. E. coli cells containing the lacZ-opd fusion showed higher levels of hydrolase activity than did cells containing the parent plasmid.  相似文献   

6.
Flavobacterium sp. ATCC 27551 hydrolysed both diethyl (parathion and diazinon) and dimethyl (methyl parathion and fenitrothion) phosphorothioates while Pseudomonas sp. ATCC 29353 hydrolysed only diethyl (parathion and diazinon) phosphorothioates. Glucose inhibited the hydrolysis of parathion by Pseudomonas sp., but not by Flavobacterium sp. Evidently, the Flavobacterium hydrolase differs from that of Pseudomonas sp. The Pseudomonas sp. converted 4-nitrophenol to 4-aminophenol in the presence of glucose and to nitrite in its absence; 4-nitrophenol was not metabolized by the Flavobacterium sp.  相似文献   

7.
Wang XX  Chi Z  Ru SG  Chi ZM 《Biodegradation》2012,23(5):763-774
In this study, the mph gene encoding methyl parathion hydrolase from Pseudomonas sp. WBC-3 was expressed in Yarrowia lipolytica and the expressed methyl parathion hydrolase was displayed on cell surface of Y. lipolytica. The activity of methyl parathion hydrolase displayed on the yeast cells of the transformant Z51 was 59.5 U mg?1 of cell dry cells (450.6 U per mL of the culture) in the presence of 5.0 mM of Co2?. The displayed methyl parathion hydrolase had the optimal pH of 9.5 and the optimal temperature of 40 °C, respectively and was stable in the pH range of 4.5-11 and up to 40 °C. The displayed methyl parathion hydrolase was also stimulated by Co2?, Cu2?, Ni2? and Mn2?, and was not affected by Fe2?, Fe3?, Na?, K?, Ca2? and Zn2?, but was inhibited by other cations tested. Under the optimal conditions (OD(600 nm) = 2.6, the substrate concentration = 100 mg L?1 and 40 °C), 90.8 % of methyl parathion was hydrolyzed within 30 min. Under the similar conditions, 98.7, 97.0, 96.5 and 94.4 % of methyl parathion in tap water (pH 9.5), tap water (pH 6.8), seawater (pH 9.5) and natural seawater (pH 8.2) were hydrolyzed, respectively, suggesting that the methyl parathion hydrolase displayed on the yeast cells can effectively remove methyl parathion in water.  相似文献   

8.
9.
An optical microbial biosensor was described for the detection of methyl parathion pesticide. Whole cells of Flavobacterium sp. were immobilized by trapping in glass fiber filter and were used as biocomponent along with optic fiber system. Flavobacterium sp. has the organophosphorus hydrolase enzyme, which hydrolyzes the methyl parathion into detectable product p-nitrophenol. The immobilized microbial biocomponent was disposable, cost-effective and showed high reproducibility and uniformity. The detection of methyl parathion by the use of disposable microbial biocomponent with optical biosensor was simple, single step and direct measurement of very low quantity of the sample. The home made reaction vessel was small and needed only 75 microl of sample. A lower detection limit 0.3 microM methyl parathion was estimated from the linear range (4-80 microM) of calibration plot of organophosphorus hydrolase enzymatic assay. The applicability to synthetic methyl parathion spiked samples was demonstrated.  相似文献   

10.
假单胞菌WBC—3甲基对硫磷水解酶性质的初步研究   总被引:12,自引:0,他引:12  
从最近分离到的有机磷农药降解菌Pseudomonas sp.WBC—3中获得了甲基对硫磷水解酶(Methyl parathion hydrolase,MPH,EC3.1.8.3)。该酶在48h的培养物中分布比例分别为:上清液2.1%,胞内86.2%和胞间质11.7%,说明MPH为胞内酶。经过CM—sepharose Fast Flow阳离子交换层析,获得电泳纯的酶。SDS—PAGE和凝胶过滤层析表明,该酶为单体蛋白,分子量约为34kD。动力学分析显示该酶为非特异性有机磷降解酶,但最适底物为甲基对硫磷。在pH9~12范围,酶表现较高活力水平,最高活力的反应温度为40℃。根据各类金属离子和鳌合剂对酶活的影响,推测MPH为金属酶。  相似文献   

11.
Pure recombinant Flavobacterium parathion hydrolase (an organophosphorus acid anhydrase) from Streptomyces lividans was found to hydrolyze the toxic nerve agent soman at only 0.1% of the rate observed with parathion as substrate. Studies with wild-type and recombinant strains of S. lividans support the lack of significant soman breakdown by the hydrolase and also indicate the presence in S. lividans of other significant hydrolytic enzymatic activity towards soman.  相似文献   

12.
Pure recombinant Flavobacterium parathion hydrolase (an organophosphorus acid anhydrase) from Streptomyces lividans was found to hydrolyze the toxic nerve agent soman at only 0.1% of the rate observed with parathion as substrate. Studies with wild-type and recombinant strains of S. lividans support the lack of significant soman breakdown by the hydrolase and also indicate the presence in S. lividans of other significant hydrolytic enzymatic activity towards soman.  相似文献   

13.
A soluble casein kinase isolated and purified to homogeneity from the human erythrocyte cytosol by phosphocellulose and Sephadex G-200 chromatographies is indistinguishable from the membrane-bound casein (spectrin) kinase according to physical and site-specificity criteria. The soluble enzyme shows an Mr of about 30000 by gel filtration and comigrates with the purified membrane spectrin kinase as a single polypeptide of 32000 Da on sodium dodecyl sulfate polyacrylamide gels. The soluble kinase phosphorylates spectrin in situ in spectrin kinase-depleted ghosts and catalyzes the in vitro phosphorylation of partially dephosphorylated spectrin with saturation kinetics identical to those displayed by the membrane spectrin kinase. When component 2 of spectrin that had been phosphorylated with [gamma-32P]ATP by either the soluble or the membrane kinases was subjected to limited proteolysis, the same 21500 Da papain-generated phosphopeptide was found to have been produced by the two enzymes. The same 21500 Da phosphopeptide was identified after papain digestion of spectrin isolated from intact cells that had been incubated with 32Pi. However, this particular peptide was not labeled in spectrin that had been phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase. Identical phosphopeptide patterns were obtained by gel filtration and two-dimensional peptide maps of trypsin-cleaved component 2 of spectrin that had been labeled in situ, in intact ghosts or in spectrin kinase-depleted ghosts supplemented with the soluble kinase. These findings indicate a possible identity of the soluble with the membrane-bound casein (spectrin) kinase.  相似文献   

14.
Parathion hydrolases have been previously described for an American isolate of Pseudomonas diminuta and a Philippine isolate of Flavobacterium sp. (ATCC 27551). The gene which encodes the broad-spectrum organophosphate phosphotriesterase in P. diminuta has been shown by other investigators to be located on a 66-kilobase (kb) plasmid. The intact gene (opd, organophosphate-degrading gene) from this degradative plasmid was cloned into M13mp10 and found to express parathion hydrolase under control of the lac promoter in Escherichia coli. In Flavobacterium sp. strain ATCC 27551, a 43-kb plasmid was associated with the production of parathion hydrolase by curing experiments. The M13mp10-cloned fragment of the opd gene from P. diminuta was used to identify a homologous genetic region from Flavobacterium sp. strain ATCC 27551. Southern hybridization experiments demonstrated that a genetic region from the 43-kb Flavobacterium sp. plasmid possessed significant homology to the opd sequence. Similar hybridization did not occur with three other native Flavobacterium sp. plasmids (approximately 23, 27, and 51 kb) present within this strain or with genomic DNA from cured strains. Restriction mapping of various recombinant DNA molecules containing subcloned fragments of both opd plasmids revealed that the restriction maps of the two opd regions were similar, if not identical, for all restriction endonucleases tested thus far. In contrast, the restriction maps of the cloned plasmid sequences outside the opd regions were not similar. Thus, it appears that the two discrete bacterial plasmids from parathion-hydrolyzing soil bacteria possess a common but limited region of sequence homology within potentially nonhomologous plasmid structures.  相似文献   

15.
A novel esterase catalyzing regioselective hydrolysis was purified from the membrane fraction of Microbacterium sp. 7-1W, and characterized. The enzyme was solubilized with Brij 58 and purified 13.8-fold to apparent homogeneity with 2.58% overall recovery. The relative molecular mass of the native enzyme as estimated by gel filtration was more than 600,000 Da, and the subunit molecular mass was 62,000 Da. The enzyme catalyzed cleavage of the terminal ester bonds of cetraxate esters and pantothenate esters. The K(m) and V(max) values for methyl cetraxate were 0.380 mM and 7.76 micromole min(-1) mg(-1) protein, respectively. The enzyme was inhibited by serine hydrolase inhibitors.  相似文献   

16.
Parathion hydrolases have been previously described for an American isolate of Pseudomonas diminuta and a Philippine isolate of Flavobacterium sp. (ATCC 27551). The gene which encodes the broad-spectrum organophosphate phosphotriesterase in P. diminuta has been shown by other investigators to be located on a 66-kilobase (kb) plasmid. The intact gene (opd, organophosphate-degrading gene) from this degradative plasmid was cloned into M13mp10 and found to express parathion hydrolase under control of the lac promoter in Escherichia coli. In Flavobacterium sp. strain ATCC 27551, a 43-kb plasmid was associated with the production of parathion hydrolase by curing experiments. The M13mp10-cloned fragment of the opd gene from P. diminuta was used to identify a homologous genetic region from Flavobacterium sp. strain ATCC 27551. Southern hybridization experiments demonstrated that a genetic region from the 43-kb Flavobacterium sp. plasmid possessed significant homology to the opd sequence. Similar hybridization did not occur with three other native Flavobacterium sp. plasmids (approximately 23, 27, and 51 kb) present within this strain or with genomic DNA from cured strains. Restriction mapping of various recombinant DNA molecules containing subcloned fragments of both opd plasmids revealed that the restriction maps of the two opd regions were similar, if not identical, for all restriction endonucleases tested thus far. In contrast, the restriction maps of the cloned plasmid sequences outside the opd regions were not similar. Thus, it appears that the two discrete bacterial plasmids from parathion-hydrolyzing soil bacteria possess a common but limited region of sequence homology within potentially nonhomologous plasmid structures.  相似文献   

17.
Restriction maps of two plasmids encoding parathion hydrolase have been determined. pPDL2 is a 39-kb plasmid harbored by Flavobacterium sp. (ATCC 27551), while pCMS1 is a 70-kb plasmid found in Pseudomonas diminuta (strain MG). Both plasmids previously have been shown to share homologous parathion hydrolase genes (termed opd for organophosphate degradation) as judged by DNA-DNA hybridization and restriction mapping. In the present study, we conducted DNA hybridization experiments using each of nine PstI restriction fragments from pCMS1 as probes against Flavobacterium plasmid DNA. The opd genes of both plasmids are located within a highly conserved region of approximately 5.1 kb. This region of homology extends approximately 2.6 kb upstream and 1.7 kb downstream from the opd genes. No homology between the two plasmids is evident outside of this region.  相似文献   

18.
Plasmid borne organophosphorus pesticide degrading (opd) gene of Flavobacterium balustinum has been amplified using polymerase chain reaction (PCR) and the resulting PCR product (1.25 Kb) was cloned in pUC18. Further, a detailed restriction map was determined to PCR product and subcloned as overlapping restriction fragments. The nucleotide sequence was determined for all subclones to obtain complete sequence of PCR amplified fragment. The sequence showed 98% similarity to opd genes cloned from other soil bacteria isolated from diversified geographical regions. The protein sequence predicted from the nucleotide sequence was almost identical to parathion hydrolase, a triesterase involved in hydrolysis of triester bond found in variety of op-pesticides. The signal sequence of parathion hydrolase contained recently discovered twin arginine transport (tat) motif. It appears that tat motif plays a critical role in membrane targeting of parathion hydrolase.  相似文献   

19.
The enzyme 6-oxocamphor hydrolase, which catalyzes the desymmetrization of 6-oxocamphor to yield (2R,4S)-alpha-campholinic acid, has been purified with a factor of 35.7 from a wild type strain of Rhodococcus sp. NCIMB 9784 grown on (1R)-(+)-camphor as the sole carbon source. The enzyme has a subunit molecular mass of 28,488 Da by electrospray mass spectrometry and a native molecular mass of approximately 83,000 Da indicating that the active protein is trimeric. The specific activity was determined to be 357.5 units mg(-)1, and the K(m) was determined to be 0.05 mm for the natural substrate. The N-terminal amino acid sequence was obtained from the purified protein, and using this information, the gene encoding the enzyme was cloned. The translation of the gene was found to bear significant homology to the crotonase superfamily of enzymes. The gene is closely associated with an open reading frame encoding a ferredoxin reductase that may be involved in the initial step in the biodegradation of camphor. A mechanism for 6-oxocamphor hydrolase based on sequence homology and the known mechanism of the crotonase enzymes is proposed.  相似文献   

20.
S-Adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) was purified to apparent homogeneity from bovine liver, bovine adrenal cortex and mouse liver. All enzymes were tetramers, composed of two types of subunit present in the proportion 1:1, as judged by SDS-polyacrylamide gel electrophoresis. The partition coefficient was exactly the same for these enzymes on high-performance gel permeation chromatography, and they co-sedimented in density gradients, suggesting the same molecular size and form of S-adenosylhomocysteine hydrolase from these sources. The bovine enzymes differed from the mouse liver enzyme with respect to isoelectric point (pI = 5.35, versus pI = 5.7), affinity for DEAE-cellulose, and migration of subunits on SDS-polyacrylamide gel electrophoresis with SDS from some commercial sources. The enzymes were not substrates for cAMP-dependent protein kinase. The apparent Km values for adenosine (0.2 microM) and S-adenosylhomocysteine (0.75 microM) were the same for all three enzymes. The ratio between Vmax for the synthesis and hydrolysis of S-adenosylhomocysteine was about 4 for the mouse liver enzyme, and about 6 for the bovine enzymes. It is concluded that only subtle kinetic and physicochemical differences exist between S-adenosylhomocysteine hydrolase from these bovine and mouse tissues. This suggests that differences in experimental procedures rather than species- and organ-differences of S-adenosylhomocysteine hydrolase are responsible for the variability in kinetic and physicochemical parameters reported for the mammalian hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号