首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the enzymatic characteristics and steroid regulation of the glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) in the human breast cancer cell line T-47D. In cell homogenates, exogenous NAD significantly increased the conversion of corticosterone to 11-dehydrocorticosterone, while NADP was ineffective. There was no conversion of 11-dehydrocorticosterone to corticosterone either with NADH or NADPH demonstrating the lack of reductase activity. In keeping with these results, RT-PCR analysis indicated a mRNA for 11β-HSD2 in T-47D cells, while 11β-HSD1 mRNA levels were undetectable. In T-47D cells treated for 24 h with medroxyprogesterone acetate (MPA), 11β-HSD catalytic activity was elevated 11-fold, while estrone (E1), estradiol (E2) and the synthetic glucocorticoid dexamethasone (DEX) were ineffective. The antiprogestin mifepristone (RU486) acted as a pure antagonist of the progestin-enhanced 11β-HSD activity, but did not exert any agonistic effects of its own. In addition, RT-PCR analysis demonstrated that MPA was a potent inducer of 11β-HSD2 gene expression, increasing the steady-state levels of 11β-HSD2 mRNA. Taken together, these results demonstrate that 11β-HSD2 is the 11β-HSD isoform expressed by T-47D cells under steady-state conditions and suggest the existence of a previously undocumented mechanism of action of progestins in breast cancer cells.  相似文献   

2.
3.
Data are presented which document the first known effect of retinoic acid on progesterone receptor (PR) gene expression. Treatment of T-47D human breast cancer cells with retinoic acid for 48 h resulted in a marked concentration-dependent decrease in the level of PR mRNA and immunoreactive protein which was similar to the known effect of progestins on these parameters. Retinoic acid, however, did not bind to PR, nor did it cause the previously demonstrated increase in PR molecular weight observed after progestin exposure. When T-47D cells were treated with retinoic acid for 6 h rather than 48 h, no reduction in the level of PR protein was noted at any retinoic acid concentration whereas the effects of retinoic acid on PR mRNA at 6 and 48 h were the same. Examination of the time course of the effects of retinoic acid revealed a rapid decrease in PR mRNA levels detectable 1 h after and maximal 6 h after treatment of T-47D cells with retinoic acid. These effects of retinoic acid contrasted with previously demonstrated progestin effects on PR mRNA which were not apparent until 3 h after and were not maximal until 12 h after treatment. As expected, the PR protein concentration was unaffected for at least 6 h but was maximally decreased 24-48 h after retinoic acid treatment. In summary, retinoic acid treatment of T-47D cells caused a decrease in the cellular PR concentration by decreasing levels of receptor mRNA and protein, suggesting that retinoic acid is capable of modulating sensitivity to progestins in human breast cancer cells.  相似文献   

4.
When deprived of steroid in the long term, T-47-D human breast cancer cells lose estrogen sensitivity of cell growth. This loss of response results from an increased basal growth rate in the absence of steroid, not from a loss of estrogen-stimulated growth, and it occurs without any loss of estrogen receptor number or function. Growth factor gene expression and sensitivity have been investigated in this model system in an attempt to unravel the molecular mechanisms underlying the progression to steroid autonomy. The transition was accompanied by a decreased dependence on added serum and by a loss of the stimulatory effects of insulin and basic fibroblast growth factor, but also by an acquired sensitivity to stimulation by transforming growth factor-beta (TGF-beta). An increase in TGF-beta 1 mRNA was detected following loss of steroid sensitivity. There was no increase in epidermal growth factor (EGF) receptor number. These findings are discussed in relation to current knowledge concerning the mechanisms by which estrogens stimulate breast cancer cell proliferation.  相似文献   

5.
Cell cycle effects of iron depletion on T-47D human breast cancer cells   总被引:2,自引:0,他引:2  
T-47D human breast cancer cells grown in culture medium containing low concentrations of fetal calf serum (FCS) proliferated very slowly, with an accumulation of cells in the G2 phase of the cell cycle, increased polyploid cells, and increased expression of transferrin receptors. Cell proliferation was stimulated by the addition of human transferrin or ammonium ferric citrate to the medium. Growth inhibition and accumulation of G2-phase cells could also be produced in T-47D cells grown in medium containing 10% FCS by the addition of the iron chelator, desferrioxamine. It is concluded that cellular deprivation of iron and/or transferrin is the major cause of reduced proliferation rates and G2-phase arrest which accompany the culture of these cells in medium supplemented with low concentrations of FCS.  相似文献   

6.
In order to investigate further the mechanisms associated with growth inhibition of human breast cancer cells by progestins and nonsteroidal antiestrogens, their effect on c-myc gene expression in T-47D-5 and T-47D cells has been investigated. The c-myc mRNA levels were differentially regulated by the synthetic progestin, medroxyprogesterone acetate and the nonsteroidal antiestrogen, monohydroxytamoxifen, in both cell lines. Antiestrogen treatment caused a persistent decrease in c-myc mRNA levels while the progestin caused a more complex response. Initially c-myc mRNA levels increased approx. 2-fold, this was followed by a decrease and then partial recovery. The end result, however, of each of these treatments is decreased cell number.  相似文献   

7.
8.
We have previously reported that physiological levels of progestins alone stimulate lactate dehydrogenase in a dose-responsive manner in the progesterone-receptor-rich human breast cancer cell line T-47D. Using isozyme electrophoresis, we have not found that lactate dehydrogenase isozyme 5 is the only isozyme detectable in these cells, as has been reported for other human breast cancer cells in long-term tissue culture. Upon treatment with progestins, isozyme 5 remains the only isozyme detectable. T-47D cells were plated in charcoal-stripped serum-containing medium and grown for 2 days before treatment with progestin. Lactate dehydrogenase stimulation then plateaued after around 2-3 days of treatment with progestin and was maintained until around day 5, following which a decline in enzyme activity occurred. The effect is specific for progestins, and inhibited by the anti-progestin RU-38486 (17 beta-hydroxy-11 beta-(4-dimethyl-aminophenyl-1)-17 alpha-(prop-1-ynil)-estra-4,9-dien-3-one). Experiments using actinomycin D and cycloheximide suggests that the effect is dependent on RNA and protein synthesis, respectively. Lactate dehydrogenase stimulation occurs regardless of the presence of the estrogenic pH indicator Phenol red, and of whether it was analyzed per mg DNA or per mg protein.  相似文献   

9.
Normal fibroblasts are dependent on adhesion to a substrate for cell cycle progression. Adhesion-deprived Rat1 cells arrest in the G1 phase of the cell cycle, with low cyclin E-dependent kinase activity, low levels of cyclin D1 protein, and high levels of the cyclin-dependent kinase inhibitor p27kip1. To understand the signal transduction pathway underlying adhesion-dependent growth, it is important to know whether prevention of any one of these down-regulation events under conditions of adhesion deprivation is sufficient to prevent the G1 arrest. To that end, sublines of Rat1 fibroblasts capable of expressing cyclin E, cyclin D1, or both in an inducible manner were used. Ectopic expression of cyclin D1 was sufficient to allow cells to enter S phase in an adhesion-independent manner. In contrast, cells expressing exogenous cyclin E at a level high enough to overcome the p27kip1-imposed inhibition of cyclin E-dependent kinase activity still arrested in G1 when deprived of adhesion. Moreover, expression of both cyclins D1 and E in the same cells did not confer any additional growth advantage upon adhesion deprivation compared to the expression of cyclin D1 alone. Exogenously expressed cyclin D1 was down-regulated under conditions of adhesion deprivation, despite the fact that it was expressed from a heterologous promoter. The ability of cyclin D1-induced cells to enter S phase in an adhesion-independent manner disappears as soon as cyclin D1 proteins disappear. These results suggest that adhesion-dependent cell cycle progression is mediated through cyclin D1, at least in Rat1 fibroblasts.  相似文献   

10.
Multihormonal regulation on the long terminal repeat (LTR) region of mouse mammary tumour virus (MMTV) has been studied using T-47-D human breast cancer cells stably transfected with the steroid sensitive LTR-C3 chimaeric gene. The specificity of steroid action on transfected LTR sequences has been compared with regulation of endogenous cellular markers. We conclude that the hormone response element of the LTR can be induced by physiological concentrations of androgen, progestin and glucocorticoid. 17 beta-Oestradiol did not regulate the LTR at physiological levels but an effect was found at 10(-6) M. This effect was not inhibited by antioestrogen nor was it reproduced by the synthetic oestrogen diethylstilboestrol suggesting such effects do not occur via the oestrogen receptor. The antioestrogens tamoxifen and transhydroxytamoxifen do not induce the LTR. No significant steroid competition was found in LTR regulation: whilst oestradiol did not act at physiological concentration it did not interfere with induction by androgen, progestin or glucocorticoid. Such gene regulation did not simply follow receptor status of the cells nor was it reflected in patterns of growth regulation by steroids. The implications of these findings on the mechanism of steroid hormone action are discussed.  相似文献   

11.
Estrogens are potent mitogens in a number of target tissues including the mammary gland where they play a pivotal role in the development and progression of mammary carcinoma. The demonstration that estrogen-induced mitogenesis is associated with the recruitment of non-cycling, G0, cells into the cell cycle and an increased rate of progression through G1 phase, has focused attention on the estrogenic regulation of molecules with a known role in the control of G1–S phase progression. These experiments provide compelling evidence that estrogens regulate the expression and function of c-Myc and cyclin D1 and activate cyclin E-Cdk2 complexes, all of which are rate limiting for progression from G1 to S phase. Furthermore, these studies reveal a novel mechanism of activation of cyclin E-Cdk2 complexes whereby estrogens promote the formation of high molecular weight complexes lacking the CDK inhibitor p21. Inducible expression of either c-Myc or cyclin D1 can mimic the effects of estrogen in activating the cyclin E-Cdk2 complexes and promoting S phase entry, providing evidence for distinct c-Myc and cyclin D1 pathways in estrogen-induced mitogenesis which converge on the activation of cyclin E-Cdk2. These data provide new mechanistic insights into the known mitogenic effects of estrogens and identify potential downstream targets that contribute to their role in oncogenesis.  相似文献   

12.
The human breast cancer cell line T-47D has high levels of progesterone receptor even in the absence of exogenously added estrogen. Because of this it is a good line in which to study aspects of progestin action. It has been shown by others that lactate dehydrogenase in MCF-7 cells is responsive to estrogen but not to progesterone. Other proteins in other systems have been found to be responsive to both estrogen and progesterone, often requiring priming by estrogen, presumably to produce sufficiently high quantities of progesterone receptor. Reasoning that lactate dehydrogenase in T-47D cells might be stimulated by progestins alone at physiological levels since these cells already have high levels of progesterone receptor, we now report that this is indeed the case.  相似文献   

13.
14.
To investigate further the molecular mechanisms of progestin regulation of human breast cancer cell growth, we studied the effect of progestins on expression of the protooncogene c-jun and other members of the jun family, jun-B and jun-D, in T-47D human breast cancer cells. The progestin medroxyprogesterone acetate (MPA) increased c-jun mRNA levels in a time- and dose-dependent fashion. Maximal effects were seen after 3 h of treatment with 10-100 nM MPA. Under these conditions, the c-jun mRNA was increased 5.4-fold above the control level. Although the c-jun mRNA level was increased by cycloheximide alone, a further 2.4-fold increase was seen when the cells were treated with MPA in the presence of cycloheximide. The p39 c-jun protein was also increased 3.8-fold by this treatment. Maximum levels of p39 c-jun protein were achieved 9 h after treatment, and this level was maintained for at least 24 h. Dexamethasone and dihydrotestosterone did not increase the p39 c-jun protein level under these conditions. However, MPA treatment of T-47D cells resulted in a 55% decrease in overall AP-1 activity, as measured by transient transfection of an AP-1-regulated chloramphenicol acetyltransferase reporter gene. These effects were all reversible by cotreatment with a 10-fold higher concentration of the antiprogestin RU 486. MPA decreased jun-B mRNA levels 50% 1 h after treatment in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The control of human breast cancer cell proliferation in vitro is known to involve complex interactions between steroid hormones, peptide hormones and growth factors. Little is known, however, of the mechanisms by which these factors, alone or in combination, control cell cycle progression and the expression of specific genes involved in cell cycle control. A pre-requisite for such studies is a cellular system in which non-proliferating or slowly proliferating cells can be maintained in a defined environment and stimulated to progress through the cell cycle by addition of hormones and growth factors. Such a system has been developed for T-47D human breast cancer cells: quiescent or slowly proliferating cells maintained in a serum-free medium can be stimulated to increase their rate of cell cycle progression upon a single addition of insulin, IGF-I, EGF, TGF or bFGF. Oestradiol alone was ineffective but caused a significant increase in % S phase cells when added in the presence of insulin. Progestins, in the presence or absence of insulin, had a biphasic effect with an initial increase in cell cycle progression followed by cell cycle arrest. Both antioestrogens and the antiprogestin, RU 486, in the absence of oestrogen or progestin, were potent inhibitors of insulin-induced proliferation. Increases in cell cycle progression were invariably accompanied by acute increases in c-fos and c-myc mRNA levels. Induction of c-myc by oestrogen and 3rogestin was inhibited by antioestrogens and RU 486, respectively. These data illustrate that the culture of breast cancer cells in a serum-free, chemically defined environment provides an excellent model in which to define the role of individual factors involved in breast cancer growth control. The biological data derived from this system provide a basis for identifying and characterizing genes involved in the control of cell cycle progression in human breast cancer.  相似文献   

16.
Both transforming growth factor beta (TGF beta) and TGF alpha mRNA are expressed in human breast cancer cell lines. We have investigated the relationship of mRNA abundance for these growth modulators to the proliferation rate of a number of human breast cancer cell lines. Furthermore, we have investigated the relationship of regulation of TGF beta and TGF alpha mRNA to growth inhibition caused by progestins and nonsteroidal antiestrogens in T-47D human breast cancer cells. The abundance of TGF beta and TGF alpha mRNA in human breast cancer cell lines was not related directly to proliferation rate of the cells in culture or estrogen receptor positivity or negativity. The relationship of TGF beta and TGF alpha mRNA to growth inhibition caused by antiestrogens and progestins was investigated in T-47D human breast cancer cells. We observed that in T-47D human breast cancer cells the abundance of TGF beta mRNA is decreased in a time- and dose-dependent fashion by progestins but remains unaltered by nonsteroidal antiestrogens. Treatment of T-47D cells for 24 h with 10 nM medroxyprogesterone acetate (MPA) reduced the level of TGF beta mRNA to one third that present in untreated cells. The same treatment increased TGF alpha mRNA 3-fold above untreated controls in a time- and dose-dependent fashion and nonsteroidal antiestrogens caused a small decrease. The regulation of both TGF alpha and TGF beta mRNA was not directly related to inhibition of growth by progestins and antiestrogens in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Inactivation of the NF2 tumor suppressor gene has been observed in certain benign and malignant tumors. Recent studies have demonstrated that merlin, the product of the NF2 gene, is regulated by Rac/PAK signaling. However, the mechanism by which merlin acts as a tumor suppressor has remained obscure. In this report, we show that adenovirus-mediated expression of merlin in NF2-deficient tumor cells inhibits cell proliferation and arrests cells at G1 phase, concomitant with decreased expression of cyclin D1, inhibition of CDK4 activity, and dephosphorylation of pRB. The effect of merlin on cell cycle progression was partially overridden by ectopic expression of cyclin D1. RNA interference experiments showed that silencing of the endogenous NF2 gene results in upregulation of cyclin D1 and S-phase entry. Furthermore, PAK1-stimulated cyclin D1 promoter activity was repressed by cotransfection of NF2, and PAK activity was inhibited by expression of merlin. Interestingly, the S518A mutant form of merlin, which is refractory to phosphorylation by PAK, was more efficient than the wild-type protein in inhibiting cell cycle progression and in repressing cyclin D1 promoter activity. Collectively, our data indicate that merlin exerts its antiproliferative effect, at least in part, via repression of PAK-induced cyclin D1 expression, suggesting a unifying mechanism by which merlin inactivation might contribute to the overgrowth seen in both noninvasive and malignant tumors.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号