首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multivariable adaptive optimization algorithm that uses transient data to improve the optimization speed was successfully implemented on-line to maximize the steady-state cellular productivity of a continuous culture of baker's yeast. The algorithm was shown to be stable even during periods of oscillatory growth and was able to reoptimize the culture when planned disturbances were introduced. Although adaptive tuning of the forgetting factor improved the performance, further refinements in the adaptive forgetting factor algorithm are necessary for completely satisfactory results.  相似文献   

2.
A fast inferential, multivariable adaptive optimization algorithm based on a fast responding off-gas data, the carbon dioxide evolution rate (CER), has been developed and applied to a continuous baker's yeast culture to maximize the cellular productivity in simulation and experimental studies. In the simulation study the process was optimized based on CER measurements using readily available steady-state data on the ratio between the cellular productivity and the CER. It was shown that the algorithm is two to three times faster than the algorithm based on cell mass concentration measurements. In the experimental study the CER was maximized without any information on the relationship between the cellular productivity and the CER. It took about 40 h for the process to converge, while about 80 h was required when the optimization was based on cell mass measurements. The attained steady state was found to be different but fairly close to that obtained with cell measurements. Briefly discussed is a switching to the cell-mass-based algorithm at the final stage of the optimization to overcome a potential inaccuracy.  相似文献   

3.
An adaptive optimization algorithm using a dynamic identification scheme with a bilevel forgetting factor (BFF) has been developed. The simulation results show superiority of this method to other methods when applied to maximize the cellular productivity of a continuous culture of baker's yeast, Saccharomyces cerievisiae. Within the limited ranges of tuning parameters tested the BFF algorithm is found to be superior in terms of initial optimization speed and accuracy and reoptimization speed and accuracy when there is an external change and long term stability (removal of "blowing up" phenomena). Algorithms tested include those based on a constant forgetting factor, an adaptive variable forgetting factor (VFF) and moving window (MW) identification.  相似文献   

4.
Optimization of cellular productivity of an industrial microalgae fermentation was investigated. The fermentation was carried out at Coors Biotech Products Company, Fort Collins, Colorado. A mathematical model was developed based on the data collected from pilot plant test runs at different operating conditions. Pontryagin's maximum principle was used for determining the optimal feed policy. A feedback control algorithm was also studied for maximizing the cellular productivity. During continuous operation, the optimum dilution rate was determined by an adaptive optimization scheme based on the steepest descent technique and a recursive least squares estimation of model parameters. A direct search algorithm was also applied to determine the optimum feed rate. Comparison of the theoretical results of the different optimization schemes revealed that the direct search algorithm was preferable because of its simplicity. The experimental results of real time application of the feedback algorithm agreed fairly well with those of the theoretical analyses. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The influence of increasing ethanol concentration in the feed on growth and physiological activity of the yeast Candida utlis was studied. The measurements were made at steady states of continuous culture under constant values of dilution rate, temperature, and pH in all stages of the fermentor; Synthetic ethanol was used as the sole source of carbon and energy in the concentration range 10-100 g/liter. The maximum biomass concentration in the effluent and maximum productivity was achieved at 75 g ethanol/liter in the feed. In respect to ethanol losses in the outlet and biomass yield, the optimum ethanol concentration in the input of the growth medium was found to be about 50 g/liter using a four-stage system.  相似文献   

6.
Based on the material balance principle applied to microbial reactions in continuous bioprocesses, the concept of reaction rate control has been developed theoretically. This concept provides a more direct way of controlling biological activities than the control of physical or chemical parameters in practice today. From an analysis of dynamic and steady-state experiments, two control systems for carbon dioxide production rate control during the continuous culture of baker's yeast have been designed and evaluated experimentally. In these control methods, intracellular NADH concentration is used as an immediate indication of the onset of glucose repression. A more sophisticated master controller based on the respiratory quotient can be combined with these control methods. The resulting control system provides a means to indirectly optimize biomass production while preventing ethanol formation in the continuous culture of baker's yeast.  相似文献   

7.
Summary Candida krusei is a harmful contaminant in baker's yeast manufacture, because it grows much faster than Saccharomyces cerevisiae under production conditions. This investigation showed that C. krusei utilizes the ethanol produced by baker's yeast as sole carbon source when molasses is used as a substrate. When the alcohol concentration in the effluent air is used as a parameter for controlling the aeration of the culture, conditions become favourable for the dominance of wild yeast because some of the ethanol produced by the baker's yeast is consumed immediately by C. krusei and aeration is then automatically reduced, leading to increased growth of the wild yeast.  相似文献   

8.
Response surface methodology was applied to optimize the growth of the yeast Phaffia rhodozyma in continuous fermentation using peat hydrolysates as substrate. A second-order, complete, factorial design of the experiments was used to develop empirical models providing a quantitative interpretation of the relationships between the two variables studied, dilution rate and pH. Maximum biomass concentration in the fermentor was obtained by employing the following predicted optimum fermentation conditions: a dilution rate of 0.017/h and a pH level of 7.19. A verification experiment, conducted at previously optimized conditions for maximum biomass volumetric productivity (a dilution rate of 0.022/h, and a pH level of 6.90), produced values for biomass concentration, residual substrate concentration, biomass yield, and biomass volumetric productivity that were very close to the predicted values, indicating the reliability of the empirical model. The concentration of the pigment astaxanthin produced by the yeast under the optimized growth conditions was found to be 544 mg astaxanthin/kg dry cell biomass.  相似文献   

9.
自絮凝酵母SPSC01在组合反应器系统中酒精连续发酵的研究   总被引:5,自引:3,他引:2  
建立了一套由四级磁力搅拌发酵罐串联组成、总有效容积4000mL的小型组合生物反应器系统 ,其中一级罐作为种子培养罐。以脱胚脱皮玉米粉双酶法制备的糖化液为种子培养基和发酵底物 ,进行了自絮凝颗粒酵母酒精连续发酵的研究。种子罐培养基还原糖浓度为100g L ,添加 (NH4)2HPO4 和KH2PO4 各 20g L ,以0.017h-1 的恒定稀释速率流加 ,并溢流至后续酒精发酵系统。发酵底物初始还原糖浓度 220g/L ,添加 (NH4)2HPO4 15g/L和KH2PO42 5g/L ,流加至第一级发酵罐 ,稀释速率分别为 0.017、0.025、0.033、0.040和0.05 0h-1。实验数据表明 ,自絮凝颗粒酵母在各发酵罐中呈部分固定化状态 ,在稀释速率0.040h-1 条件下 ,发酵系统呈一定的振荡行为 ,其他四个稀释速率实验组均能够达拟稳态。当稀释速率不超过 0 0 33h-1 ,流出末级发酵罐的发酵液中酒精浓度可以达到 12 % (V/V)以上 ,残还原糖和残总糖分别在 0 11%和 0 35 % h-1,流出末级发酵罐的发酵液中酒精浓度可以达到12%(V/V)以上,残还原糖和残总糖分别在0.11%和0.35%(W/V)以下。在稀释速率为0.033h-1时,计算发酵系统酒精的设备生产强度指标为3.32(g·L-1·h-1),与游离酵母细胞传统酒精发酵工艺相比,增加约1倍。  相似文献   

10.
The Continuous fermentation of Jerusalem artichoke juice to ethanol by free cells of Kluyveromyces marxianus UCD (FST) 55-82 has been studied in a continuous-stirred-tank bioreactor at 35 degrees C and pH 4.6. A maximum yield of 90% of the theoretical was obtained at a dilution rate of 0.05 h(-1). About 95% of the sugars were utilized at dilution rates lower than 0.15 h(-1). Volumetric ethanol productivity and volumetric biomass productivity reached maximum values of 7 g ETOH/L/h and 0.6 g dry wt/L/h, respectively, at a dilution rate of 0.2 h(-1). The maintenance energy coefficient for K. marxianus culture was found to be 0.46 g sugar/g biomass/h/ Oscillatory behavior was following a change in dilution rate from a previous steady state and from batch to continuous culture. Values of specific ethanol production rate and specific sugar uptake were found to increase almost linearly with the increase of the dilution rate. The maximum specific ethanol production rate and maximum specific sugar uptake rate were found to be 2.6 g ethanol/g/ cell/h and 7.9 sugars/g cell/h, respectively. Washout occurred at a dilution rate of 0.41 h(-1).  相似文献   

11.
For the purpose of improving ethanol productivity, the effect of air supplement on the performance of continuous ethanol fermentation system was studied. The effect of oxygen supplement on yeast concentration, cell yield, cell viability, extracellular ethanol concentration, ethanol yield, maintenance coefficient, specific rates of glucose assimilation, ethanol production, and ethanol productivity have been evaluated, using a high alcohol tolerant Saccharomyces cerevisiae STV89 strain and employing a continuous fermentor equipped with an accurate air metering system in the flow rate range 0-11 mL air/L/h. It was found that, when a small amount of oxygen up to about 80mu mol oxygen/L/h was supplied, the ethanol productivity was significantly enhanced as compared to the productivity of the culture without any air supplement. It was also found that the oxygen supplement improved cell viability considerably as well as the ethanol tolerance level of yeast. As the air supply rate was increased, from 0 to 11 mL air/L/h while maintaining a constant dilution rate at about 0.06 h(-1), the cell concentration increased from 2.3 to 8.2 g/L and the ethanol productivity increased from 1.7 to 4.1 g ethanol/L/h, although the specific ethanol production rate decreased slightly from 0.75 to 0.5 g ethanol/g cell/h. The ethanol yield was slightly improved also with an increase in air supply rate, from about 0.37 to 0.45 ethanol/g glucose. The maintenance coefficient increased by only a small amount with the air supplement. This kind of air supplement technique may very well prove to be of practical importance to a development of a highly productive ethanol fermentation process system especially as a combined system with a high density cell culture technique.  相似文献   

12.
Summary If the supply of phosphate were restricted in a glucose-limited chemostat culture of baker's yeast to an extent that residual phosphate in the medium could hardly be observed, the value of critical dilution rate was apparently enhanced. This observation suggests a possible mediation by phosphate between anaerobic and aerobic functions of the baker's yeast.  相似文献   

13.
A simulation and experimental study has been carried out on the adaptive optimization of fed-batch culture of yeast. In the simulation study, three genetic algorithms based on different optimization strategies were developed. The performance of those three algorithms were compared with one another and with that of a variational calculus approach. The one that showed the best performance was selected to be used in the subsequent experimental study. To confer an adaptability, an online adaptation (or model update) algorithm was developed and incorporated into the selected optimization algorithm. The resulting adaptive algorithm was experimentally applied to fed-batch cultures of a recombinant yeast producing salmon calcitonin, to maximize the cell mass production. It followed the actual process quite well and gave a much higher value of performance index than the simple genetic algorithm with no adaptability.  相似文献   

14.
The biosorption of cadmium and lead ions from artificial aqueous solutions using waste baker's yeast biomass was investigated. The yeast cells were treated with caustic, ethanol and heat for increasing their biosorption capacity and the highest metal uptake values (15.63 and 17.49 mg g(-1) for Cd(2+) and Pb(2+), respectively) were obtained by ethanol treated yeast cells. The effect of initial metal concentration and pH on biosorption by ethanol treated yeast was studied. The Langmuir model and Freundlich equation were applied to the experimental data and the Langmuir model was found to be in better correlation with the experimental data. The maximum metal uptake values (qmax, mg g(-1)) were found as 31.75 and 60.24 for Cd(2+) and Pb(2+), respectively. Competitive biosorption experiments were performed with Cd(2+) and Pb(2+) together with Cu(2+) and the competitive biosorption capacities of the yeast biomass for all metal ions were found to be lower than in non-competitive conditions.  相似文献   

15.
A stoichiometry-based model for the fed-batch culture of the recombinant bacterium Bacillus subtilis ATCC 6051a, producing extracellular alpha-amylase as a desirable product and proteases as undesirable products, was developed and verified. The model was then used for optimizing the feeding schedule in fed-batch culture. To handle higher-order model equations (14 state variables), an optimization methodology for the dual-enzyme system is proposed by integrating Pontryagin's optimum principle with fermentation measurements. Markov chain Monte Carlo (MCMC) procedures were appropriate for model parameter and decision variable estimation by using a priori parameter distributions reflecting the experimental results. Using a simplified Metropolis-Hastings algorithm, the specific productivity of alpha-amylase was maximized and the optimum path was confirmed by experimentation. The optimization process predicted a further 14% improvement of alpha-amylase productivity that could not be realized because of the onset of sporulation. Among the decision variables, the switching time from batch to fed-batch operation (t(s)) was the most sensitive decision variable.  相似文献   

16.
The yeast Pachysolen tannophilus was entrapped in calcium alginate beads to ferment D-xylose on a continous basis in the presence of high cell densities. Experimental operating variables included the feed D-xylose concentration, the dilution rate, and the fermentor biomass concentration. Under favorable operating conditions, cultures retained at least 50% of their initial productivity after 26 days of operation. The specific ehanol production rate was dependent on the substrate level in the fermentor, passing through an optimum when the D-xylose concentration was between 28 and 35 g/L. Consequently, reactor productivity increased with dilution rate and feed D-xylose concentration until a maximum was reached. The ethanol content of the effluent always decreased with increasing dilution rate, but excessive dilution rates diminished the ethanol content without increasing productivity. Unlike production rate, ethanol yield declined monotonically from 0.35 g/g as the fermentor substrate concentration increased. The yield was 69% of that theoretically possible when the D-xylose concentration was near zero, as opposed to 42% when it was in the range supporting the optimum specific rate of ethanol production. As long as D-xylose was supplied to cells faster than they could consume it, productivity increased with the mass of cells immobilized. The effectiveness factor associated with the calcium alginte beads used in this system was 0.4, indicating that only 40% of the entrapped biomass was effective in converting D-xylose to ethanol because of diffusion limitations.  相似文献   

17.
Hybrids between naturally occurring wine yeast strains and laboratory strains were formed as a method of increasing genetic variability to improve the ethanol tolerance of yeast strains. The hybrids were subjected to competition experiments under continuous culture controlled by pH with increasing ethanol concentrations over a wide range to select the fastest-growing strain at any concentration of ethanol. The continuous culture system was obtained by controlling the dilution rate of a chemostat connected to a pH-meter. The nutrient pump of the chemostat was switched on and off in response to the pH of the culture, which was thereby kept near a critical value (pHc). Under these conditions, when the medium was supplemented with ethanol, the ethanol concentration of the culture increased with each pulse of dilution. A hybrid strain was selected by this procedure that was more tolerant than any of the highly ethanol-tolerant wine yeast strains at any concentration of ethanol and was able to grow at up to 16% (vol/vol) ethanol. This improvement in ethanol tolerance led to an increase in both the ethanol production rate and the total amount of ethanol produced.  相似文献   

18.
The direct microbial conversion (DMC) process for the production of ethanol from lignocellulosic biomass is limited by low volumetric ethanol production rates due to the low cell densities of Clostridium thermosaccharolyticum which is a key organism for ethanol production in this process. Hence, this study focuses on the use of a continuous- culture cell recycle system to improve the volumetric ethanol productivity and yield of the fermentation of xylose by C. thermosaccharolyticum. Early experiments with the continuous-culture cell recycle system showed a two-fold improvement in volumetric ethanol productivity. However, the ethanol yield at the higher dilution rates suffered because of the large amount of lactate produced. The manipulation of two environmental parameters-iron concentration in the nutrient medium and the N(2) purge rate of the fermentor headspace-allowed a dramatic reduction in the lactate production and a simultaneous improvement in the ethanol titer and yield. Under the improved conditions of increased iron concentration (12.5 mg/L FeSO(4) . 7H(2)O) and decreased N(2) purge rate (0.1 L/min), a continuous culture of C. thermosaccharolyticum operating at a dilution rate of 0.24 h(-1) and 50% cell recycle produced 8.6 g/L ethanol and less than 1 g/L each of acetate and lactate. The volumetric ethanol productivity was 2.2 g/L/h, which is 8 times larger than obtained for a continuous culture operated with no cell recycle and the same specific growth rate.  相似文献   

19.
In the present study the optimized parameters for highest ethanol productivity by Kluyveromyces lactis immobilized cells bioreactor were obtained using the method of Lagrange multipliers. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier produced by radiation polymerization were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) gL(-1). The results indicate that volumetric ethanol productivity is influenced by substrate concentration and dilution rate. The highest value 7.17 gL(-1) h(-1) is obtained at higher lactose concentration (150 gL(-1)) in feed medium and 0.3 h(-1) dilution rate. The same results have been obtained through the application of "LINGO" software for mathematical optimization.  相似文献   

20.
Continuous ethanol production in a one-stage continuous stirred tank fermentor without recycle was carried out using a yeast strain Saccharomyces cerevisiae. Different dilution rates were used. Cell and ethanol concentrations in the culture medium decreased with increasing dilution rates, and the maximum value of 3.0 g l−1h−1was found at a dilution rate of 0.340 h−1. Specific ethanol productivities increased as dilution rates were increased, and the highest value appeared at about the same dilution rate as that for the maximum fermentor productivity. A material balance equation, which relates total amount of spent medium to cell synsthesis, ethanol production, and overall maintenance, was introduced. The cellular yield and overall maintenance coefficients increased with increasing dilution rates. The fraction of limiting substrate utilized for overall maintenance, which includes the limiting substrate spent for purposes other than cell synthesis and ethanol production, decreased with increasing dilution rates. The non-product associated substrate utilization can be minimized if correct dilution rate is chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号