首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual‐based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual‐based phenology models. We demonstrate our approach using a temperature‐dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large‐scale simulations, such as studies of altered pest distributions under climate change.  相似文献   

3.
Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change. Focusing on the start (leaf unfolding) and end (leaf coloring) of plant growing seasons, we show that the recent rapid expansion in ground‐ and remote sensing‐ based phenology data acquisition has been highly beneficial and has supported major advances in plant phenology research. Studies using multiple data sources and methods generally agree on the trends of advanced leaf unfolding and delayed leaf coloring due to climate change, yet these trends appear to have decelerated or even reversed in recent years. Our understanding of the mechanisms underlying the plant phenology responses to climate warming is still limited. The interactions between multiple drivers complicate the modeling and prediction of plant phenology changes. Furthermore, changes in plant phenology have important implications for ecosystem carbon cycles and ecosystem feedbacks to climate, yet the quantification of such impacts remains challenging. We suggest that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process‐based phenology modeling, and on the scaling of phenology from species to landscape‐level.  相似文献   

4.
The developmental response of insects to temperature is important in understanding the ecology of insect life histories. Temperature-dependent phenology models permit examination of the impacts of temperature on the geographical distributions, population dynamics and management of insects. The measurement of insect developmental, survival and reproductive responses to temperature poses practical challenges because of their modality, variability among individuals and high mortality near the lower and upper threshold temperatures. We address this challenge with an integrated approach to the design of experiments and analysis of data based on maximum likelihood. This approach expands, simplifies and unifies the analysis of laboratory data parameterizing the thermal responses of insects in particular and poikilotherms in general. This approach allows the use of censored observations (records of surviving individuals that have not completed development after a certain time) and accommodates observations from temperature transfer treatments in which individuals pass only a portion of their development at an extreme (near-threshold) temperature and are then placed in optimal conditions to complete their development with a higher rate of survival. Results obtained from this approach are directly applicable to individual-based modeling of insect development, survival and reproduction with respect to temperature. This approach makes possible the development of process-based phenology models that are based on optimal use of available information, and will aid in the development of powerful tools for analyzing eruptive insect population behavior and response to changing climatic conditions.  相似文献   

5.
Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long‐term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21‐year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05–0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species – especially for early‐flowering species – while spring temperature was significantly related to flowering time only for later‐flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species’ phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses opposite to those predicted by warming alone.  相似文献   

6.
Climate change can cause major changes to the dynamics of individual species and to those communities in which they interact. One effect of increasing temperatures is on insect voltinism, with the logical assumption that increases in surface temperatures would permit multivoltine species to increase the number of generations per year. Though insect development is primarily driven by temperature, most multivoltine insect species rely on photoperiodic cues, which do not change from year‐to‐year or in response to climate warming, to initiate diapause. Thus, the relationship between climate change and voltinism could be complex. We use a phenology model for grape berry moth, Paralobesia viteana (Clemens), which incorporates temperature‐dependent development and diapause termination, and photoperiod‐dependent diapause induction, to explore historical patterns in year‐to‐year voltinism fluctuations. We then extend this model to predict voltinism under varying scenarios of climate change to show the importance of both the quality and quantity of accumulated heat units. We also illustrate that increases in mean surface temperatures > 2 °C can have dramatic effects on insect voltinism by causing a shift in the ovipositional period that currently is subject to diapause‐inducing photoperiods.  相似文献   

7.
Autumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing season, will change under future climate conditions. The most commonly held paradigm is that temperature and photoperiod are the primary controls, which suggests a future extension of the autumnal growing season as global temperatures rise. Here, using two decades of ground‐ and satellite‐based observations of temperate deciduous forest phenology, we show that the timing of autumn senescence is correlated with the timing of spring budburst across the entire eastern United States. On a year‐to‐year basis, an earlier/later spring was associated with an earlier/later autumn senescence, both for individual species and at a regional scale. We use the observed relationship to develop a novel model of autumn phenology. In contrast to current phenology models, this model predicts that the potential response of autumn phenology to future climate change is strongly limited by the impact of climate change on spring phenology. Current models of autumn phenology therefore may overpredict future increases in the length of the growing season, with subsequent impacts for modeling future CO2 uptake and evapotranspiration.  相似文献   

8.
The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground‐based long‐term (20–50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies.  相似文献   

9.
Summer temperature on the Cape Churchill Peninsula (Manitoba, Canada) has increased rapidly over the past 75 years, and flowering phenology of the plant community is advanced in years with warmer temperatures (higher cumulative growing degree days). Despite this, there has been no overall shift in flowering phenology over this period. However, climate change has also resulted in increased interannual variation in temperature; if relationships between phenology and temperature are not linear, an increase in temperature variance may interact with an increase in the mean to alter how community phenology changes over time. In our system, the relationship between phenology and temperature was log‐linear, resulting in a steeper slope at the cold end of the temperature spectrum than at the warm end. Because below‐average temperatures had a greater impact on phenology than above‐average temperatures, the long‐term advance in phenology was reduced. In addition, flowering phenology in a given year was delayed if summer temperatures were high the previous year or 2 years earlier (lag effects), further reducing the expected advance over time. Phenology of early‐flowering plants was negatively affected only by temperatures in the previous year, and that of late‐flowering plants primarily by temperatures 2 years earlier. Subarctic plants develop leaf primordia one or more years prior to flowering (preformation); these results suggest that temperature affects the development of flower primordia during this preformation period. Together, increased variance in temperature and lag effects interacted with a changing mean to reduce the expected phenological advance by 94%, a magnitude large enough to account for our inability to detect a significant advance over time. We conclude that changes in temperature variability and lag effects can alter trends in plant responses to a warming climate and that predictions for changes in plant phenology under future warming scenarios should incorporate such effects.  相似文献   

10.
As the world’s climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant–herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions.  相似文献   

11.
1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life‐history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, whereas phenology can shape population performance and community interactions. 2. It was experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies [Pachydiplax longipennis (Burmeister)]. Larvae were reared under three environmental temperatures: ambient, +2.5, and +5 °C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally‐occurring variation. 3. Clear effects of temperature were found in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non‐significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life‐history stages is critical to interpreting the consequences of warming for organismal performance.  相似文献   

12.
Under global warming, the survival of many populations of sedentary organisms in seasonal environments will largely depend on their ability to cope with warming in situ by means of phenotypic plasticity or adaptive evolution. This is particularly true in high‐latitude environments, where current growing seasons are short, and expected temperature increases large. In such short‐growing season environments, the timing of growth and reproduction is critical to survival. Here, we use the unique setting provided by a natural geothermal soil warming gradient (Hengill geothermal area, Iceland) to study the response of Cerastium fontanum flowering phenology to temperature. We hypothesized that trait expression and phenotypic selection on flowering phenology are related to soil temperature, and tested the hypothesis that temperature‐driven differences in selection on phenology have resulted in genetic differentiation using a common garden experiment. In the field, phenology was related to soil temperature, with plants in warmer microsites flowering earlier than plants at colder microsites. In the common garden, plants responded to spring warming in a counter‐gradient fashion; plants originating from warmer microsites flowered relatively later than those originating from colder microsites. A likely explanation for this pattern is that plants from colder microsites have been selected to compensate for the shorter growing season by starting development at lower temperatures. However, in our study we did not find evidence of variation in phenotypic selection on phenology in relation to temperature, but selection consistently favoured early flowering. Our results show that soil temperature influences trait expression and suggest the existence of genetically based variation in flowering phenology leading to counter‐gradient local adaptation along a gradient of soil temperatures. An important implication of our results is that observed phenotypic responses of phenology to global warming might often be a combination of short‐term plastic responses and long‐term evolutionary responses, acting in different directions.  相似文献   

13.
Maize phenology observations at 112 national agro‐meteorological experiment stations across China spanning the years 1981–2009 were used to investigate the spatiotemporal changes of maize phenology, as well as the relations to temperature change and cultivar shift. The greater scope of the dataset allows us to estimate the effects of temperature change and cultivar shift on maize phenology more precisely. We found that maize sowing date advanced significantly at 26.0% of stations mainly for spring maize in northwestern, southwestern and northeastern China, although delayed significantly at 8.0% of stations mainly in northeastern China and the North China Plain (NCP). Maize maturity date delayed significantly at 36.6% of stations mainly in the northeastern China and the NCP. As a result, duration of maize whole growing period (GPw) was prolonged significantly at 41.1% of stations, although mean temperature (Tmean) during GPw increased at 72.3% of stations, significantly at 19.6% of stations, and Tmean was negatively correlated with the duration of GPw at 92.9% of stations and significantly at 42.9% of stations. Once disentangling the effects of temperature change and cultivar shift with an approach based on accumulated thermal development unit, we found that increase in temperature advanced heading date and maturity date and reduced the duration of GPw at 81.3%, 82.1% and 83.9% of stations on average by 3.2, 6.0 and 3.5 days/decade, respectively. By contrast, cultivar shift delayed heading date and maturity date and prolonged the duration of GPw at 75.0%, 94.6% and 92.9% of stations on average by 1.5, 6.5 and 6.5 days/decade, respectively. Our results suggest that maize production is adapting to ongoing climate change by shift of sowing date and adoption of cultivars with longer growing period. The spatiotemporal changes of maize phenology presented here can further guide the development of adaptation options for maize production in near future.  相似文献   

14.
植物物候研究进展   总被引:30,自引:0,他引:30  
植物物候直接反映了气候变化的影响,是植被动态模拟的关键.在遥感和模型技术的推动下,植物物候与全球变化关系的研究日益受到人们的关注.文中从植物物候与环境因子的相互关系、植物物候对全球变化的响应以及植物物候的遥感监测方面,综合论述了植物物候的研究进展,找出植被物候研究的不足,进而提出未来植被物候的研究方向.  相似文献   

15.
Temperatures in mountain areas are increasing at a higher rate than the Northern Hemisphere land average, but how fauna may respond, in particular in terms of phenology, remains poorly understood. The aim of this study was to assess how elevation could modify the relationships between climate variability (air temperature and snow melt‐out date), the timing of plant phenology and egg‐laying date of the coal tit (Periparus ater). We collected 9 years (2011–2019) of data on egg‐laying date, spring air temperature, snow melt‐out date, and larch budburst date at two elevations (~1,300 m and ~1,900 m asl) on a slope located in the Mont‐Blanc Massif in the French Alps. We found that at low elevation, larch budburst date had a direct influence on egg‐laying date, while at high‐altitude snow melt‐out date was the limiting factor. At both elevations, air temperature had a similar effect on egg‐laying date, but was a poorer predictor than larch budburst or snowmelt date. Our results shed light on proximate drivers of breeding phenology responses to interannual climate variability in mountain areas and suggest that factors directly influencing species phenology vary at different elevations. Predicting the future responses of species in a climate change context will require testing the transferability of models and accounting for nonstationary relationships between environmental predictors and the timing of phenological events.  相似文献   

16.
Impact of climate change on plant phenology in Mediterranean ecosystems   总被引:1,自引:0,他引:1  
Plant phenology is strongly controlled by climate and has consequently become one of the most reliable bioindicators of ongoing climate change. We used a dataset of more than 200 000 records for six phenological events of 29 perennial plant species monitored from 1943 to 2003 for a comprehensive assessment of plant phenological responses to climate change in the Mediterranean region. Temperature, precipitation and North Atlantic Oscillation (NAO) were studied together during a complete annual cycle before phenological events to determine their relative importance and potential seasonal carry‐over effects. Warm and dry springs under a positive phase of NAO advance flowering, leaf unfolding and fruiting dates and lengthen the growing season. Spatial variability of dates (range among sites) was also reduced during warm and dry years, especially for spring events. Climate during previous weeks to phenophases occurrence had the greatest impact on plants, although all events were also affected by climate conditions several months before. Immediate along with delayed climate effects suggest dual triggers in plant phenology. Climatic models accounted for more than 80% of variability in flowering and leaf unfolding dates, and in length of the growing season, but for lower proportions in fruiting and leaf falling. Most part of year‐to‐year changes in dates was accounted for temperature, while precipitation and NAO accounted for <10% of dates' variability. In the case of flowering, insect‐pollinated species were better modelled by climate than wind‐pollinated species. Differences in temporal responses of plant phenology to recent climate change are due to differences in the sensitivity to climate among events and species. Spring events are changing more than autumn events as they are more sensitive to climate and are also undergoing the greatest alterations of climate relative to other seasons. In conclusion, climate change has shifted plant phenology in the Mediterranean region.  相似文献   

17.
Climate change is altering phenology; however, the magnitude of this change varies among taxa. Compared with phenological mismatch between plants and herbivores, synchronization due to climate has been less explored, despite its potential implications for trophic interactions. The earlier budburst induced by defoliation is a phenological strategy for plants against herbivores. Here, we tested whether warming can counteract defoliation‐induced mismatch by increasing herbivore‐plant phenological synchrony. We compared the larval phenology of spruce budworm and budburst in balsam fir, black spruce, and white spruce saplings subjected to defoliation in a controlled environment at temperatures of 12, 17, and 22°C. Budburst in defoliated saplings occurred 6–24 days earlier than in the controls, thus mismatching needle development from larval feeding. This mismatch decreased to only 3–7 days, however, when temperatures warmed by 5 and 10°C, leading to a resynchronization of the host with spruce budworm larvae. The increasing synchrony under warming counteracts the defoliation‐induced mismatch, disrupting trophic interactions and energy flow between forest ecosystem and insect populations. Our results suggest that the predicted warming may improve food quality and provide better growth conditions for larval development, thus promoting longer or more intense insect outbreaks in the future.  相似文献   

18.
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6–5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5–15 days and delayed leaf coloring by 18–21 days, resulting in an extension of the growing season by as much as 20–29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring‐porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse‐porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring‐porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10‐16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring‐blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology.  相似文献   

19.
Shifts in phenology are a well‐documented ecological response to changes in climate, which may or may not be adaptive for a species depending on the climate sensitivity of other ecosystem processes. Furthermore, phenology may be affected by factors in addition to climate, which may accentuate or dampen climate‐driven phenological responses. In this study, we investigate how climate and population demographic structure jointly affect spawning phenology of a fish species of major commercial importance: walleye pollock (Gadus chalcogrammus). We use 32 years of data from ichthyoplankton surveys to reconstruct timing of pollock reproduction in the Gulf of Alaska and find that the mean date of spawning has varied by over 3 weeks throughout the last >3 decades. Climate clearly drives variation in spawn timing, with warmer temperatures leading to an earlier and more protracted spawning period, consistent with expectations of advanced spring phenology under warming. However, the effects of temperature were nonlinear, such that additional warming above a threshold value had no additional effect on phenology. Population demographics were equally as important as temperature: An older and more age‐diverse spawning stock tended to spawn earlier and over a longer duration than a younger stock. Our models suggest that demographic shifts associated with sustainable harvest rates could shift the mean spawning date 7 days later and shorten the spawning season by 9 days relative to an unfished population, independent of thermal conditions. Projections under climate change suggest that spawn timing will become more stable for walleye pollock in the future, but it is unknown what the consequences of this stabilization will be for the synchrony of first‐feeding larvae with production of zooplankton prey in spring. With ongoing warming in the world’s oceans, knowledge of the mechanisms underlying reproductive phenology can improve our ability to monitor and manage species under changing climate conditions.  相似文献   

20.
Understanding and predicting how adaptation will contribute to species' resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health‐related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait‐based models suggest that low‐ to mid‐latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species' distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. Moving towards well designed field experiments would allow us to not only capture this complexity, but also study more diverse species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号