首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oviposition by northern corn rootworms, Diabrotica barberi Smith and Lawrence, and western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), key pests of corn in the Great Plains of the USA, occurs in the soil during late summer. Overwintering eggs are exposed to variable soil moisture and temperatures below ?5 °C. The winter mortality of eggs in the soil is a primary factor that determines the potential for larval injury to corn the following spring. Our studies aimed to determine the comparative supercooling capacities of northern and western corn rootworm eggs and to assess egg mortality following brief exposure to extreme low temperature, ranging from ?12.0 to ?21.5 °C, under three moisture regimes. Eggs of northern corn rootworm were supercooled to a temperature as low as ?27 °C, and survived supercooling to a greater extent than did western corn rootworm eggs. Moisture treatment prior to supercooling had little effect on northern corn rootworm eggs. Western corn rootworm eggs were more resistant than northern corn rootworm eggs to the effects of desiccation followed by supercooling. The survival of northern corn rootworm eggs was better than western corn rootworms under dry conditions, followed by exposure to temperatures of ?12.0 and ?17.5 °C, but was very low at ?21.5 °C, regardless of the moisture regime. The results suggest that moisture and temperature may interact in the soil environment to determine the overwintering survival of corn rootworms. It is evident from these studies that both rootworm species experience mortality at temperatures well above the supercooling points of the eggs, but that differences exist in the effects of substrate moisture treatments on the cold‐hardiness of eggs from the two species.  相似文献   

2.
Immunodiffusion and tube precipitation tests, polyacrylamide gel electrophoresis of virus polypeptides, and cross-transmission experiments suggest that two nuclear polyhedrosis viruses, one from Lymantria monacha and one from L. dispar, are partially related to each other, but not identical. The virus particle proteins seem to be more specific than the polyhedron proteins.  相似文献   

3.
Rearing and release procedures forCotesia melanoscela (Ratzeburg) (Hymenoptera: Braconidae), an early-season parasitoid ofLymantria dispar (L.), were evaluated in 1995 and 1996 at the Beltsville Agricultural Research Center, Beltsville, Maryland, USA. Mass rearing procedures were developed during the winter/spring of 1995/1996 to produce diapausingC. melanoscela cocoons for experimentation. Program efficiency as measured by percent adult emergence was estimated to be 84% with a measured sex ratio of 48:52 M:F, at an estimated cost per 1 000 cocoons of U.S. $5.26 for materials and a labor requirement of approximately 6 hours. A host larvae:female parasitoid ratio of 100:1 was found to be most efficient in terms of number of parasitoid cocoons produced per female parasitoid, but a ratio of 100:2 was most efficient in terms of number of cocoons per rearing cup. OverwinteringC. melanoscela cocoons under natural conditions for 25 weeks (November placements) before expectedL. dispar egg hatch (mid-April) resulted in excellent synchrony with host egg hatch. Alternatively, holdingC. melanoscela cocoons in cold storage for 23 or more weeks at 5°C resulted in adult parasitoid emergence beginning 10 days after removal from cold storage, and proper timing of removal would result in similar synchrony of adult emergence with host egg hatch. These alternative release strategies give managers increased program flexibility.  相似文献   

4.
The frequency of extreme events, such as cold spells, is expected to increase under global warming. Therefore, the ability of insects to survive rapid changes in temperature is an important aspect to investigate in current population ecology. The hemlock looper (HL), Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae), a defoliator of boreal balsam fir forests in eastern Canada, overwinters at the egg stage on tree trunks and branches where eggs can be exposed to very low subzero air temperatures. Using eggs from the island of Newfoundland (NL) and Quebec mainland (QC), we undertook field and laboratory experiments to determine: (1) their supercooling point (SCP) in mid‐January and mid‐February; (2) overwintering mortality; (3) cold tolerance to various combinations of subzero temperatures (?25, ?30, ?33, ?35, or ?37 °C) and exposure durations (2, 4, 8, 12, or 16 h); and (4) potential causes of death at subzero temperatures above the SCP. Regardless of population or sampling date, eggs supercooled on average at ?40.1 °C. In the field, 59% of eggs from either population that overwintered in Sainte‐Foy (QC) and Corner Brook (NL) hatched successfully, whereas none did in Armagh (QC) or Epaule (QC). In the laboratory, 50% of eggs survived after 4 h at ?34.4 °C or after 14 h at ?32.9 °C. In contrast, regardless of exposure duration, >50% of eggs hatched at temperatures ≥?33 °C, but <50% did so at ≤?35 °C, suggesting high pre‐freeze mortality. However, when eggs were attached to thermocouples and exposed to temperatures ranging from ?25 to ?37 °C for 16 h, 69% froze at temperatures of ?35 to ?37 °C, but only 2% did at ?25 or ?30 °C. Time to freeze decreased as subzero temperatures declined, and this was more evident in island eggs than in mainland eggs. Overall, eggs can freeze after a brief exposure to subzero temperatures higher than the standard SCP, and are thus highly vulnerable to cold spells.  相似文献   

5.
Potato tuber moth (PTM), Phthorimaea operculella (Zeller), (Lepidoptera: Gelechiidae) is an invasive insect pest damaging solanaceous crops. We measured the supercooling point (SCP) and survival at low temperature of different development stages to determine which would be capable of overwintering in the Korean climate and adapting to low temperatures. The SCP ranges from ?23.8°C of the egg to ?16.8 of fourth instar larvae (L4). After short periods of low temperature acclimation in L3 (third instar larva), L4 and prepupae, only the prepupal stage showed a significant lowered SCP from ?20.78 to ?22.37°C. When exposed to different subzero temperature for two hours the egg turned out to be the most cold tolerant stage showing LT50 of ?21.7°C followed by the pupal stage with ?15.89°C. One hundred percent mortality was observed when the larvae or adults were exposed to temperatures below ?15.1°C even for a period as short as 2 h. The results suggest that PTM pupae and egg would be the main overwintering stage in Korea where winter temperature does not drop below ?15°C.  相似文献   

6.
Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a pest of stored grain in Africa, Asia, and Europe. It is a quarantine insect for much of the rest of the world. Control of T. granarium can be achieved with methyl bromide, but this fumigant is an ozone‐depleting substance and is being phased out worldwide. Thus, there is an urgent need to find new methods of control, including the use of low temperatures. Here, we assess the effects of diapause and cold acclimation on the cold tolerance of T. granarium. The percentage of larvae in diapause increased with larval density, reaching 57.3% when reared at a density of 73 larvae g?1 diet. The cold tolerance of T. granarium was assessed by the supercooling points (SCPs) of various life stages. The SCP of non‐acclimated insects ranged from ?26.2 ± 0.2 °C (mean ± SEM) for eggs to ?14.4 ± 0.4 °C for larvae. The lowest SCP for larvae, ?24.3 ± 0.3 °C, was obtained for diapausing‐acclimated larvae. Based on mean LT50 values, the most cold‐tolerant stage at ?10 °C was the diapausing‐acclimated larvae (87 days) followed by non‐diapausing‐acclimated larvae (51 days), diapausing non‐acclimated larvae (19 days), adults (4 days), non‐diapausing non‐acclimated larvae (2 days), pupae (0.4 days), and eggs (0.2 days). The estimated times to obtain 99.9968% mortality (Probit 9) for diapausing‐acclimated larvae are 999, 442, 347, 84, and 15 days at 0, ?5, ?10, ?15, and ?20 °C, respectively. Probit 9 is an estimated value used by quarantine experts to estimate conditions that are required to kill all insects. In light of the long exposure time needed to control T. granarium even at ?20 °C, cooling to below ?27 °C (i.e., below the SCP of eggs) will quickly kill all life stages and may be the best way to control this insect with low temperatures.  相似文献   

7.
Entomophaga maimaiga Humber, Shimazu, et Soper (Zygomycotina: Entomophthoraceae) is a naturally occurring obligate fungal pathogen specific to gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae) larvae. This fungus is considered the most important natural enemy of this pest insect in North America and Asia. A critically important step for the development of E. maimaiga epizootics is the transmission of propagules to healthy larvae, a process known to require high humidity. Some pathogens are known to manipulate the time of day that hosts die so that propagules are produced to maximize chances of survival and thus enhance transmission. The objective of this study was to assess whether E. maimaiga manipulates L. dispar to die at a certain time of day. Laboratory bioassays were conducted at 15 and 20 °C to record the 24‐h activity pattern of death and sporulation exhibited under an L14:D10 photoperiod and 100% r.h. by four isolates of E. maimaiga in its host L. dispar. Events were recorded every 4 h. Our results clearly demonstrate that E. maimaiga‐infected L. dispar larvae die mainly in the afternoon and that the fungus sporulates during the night. The rhythm was independent of the fungal isolate tested and type of spores produced after larval death. By raising the temperature from 15 to 20 °C, the peak death time narrowed and sporulation was initiated earlier at night.  相似文献   

8.
The results of laboratory tests indicated the average survival rates for Psorophora columbiae eggs remained quite high for all of the egg populations exposed to a temperature of 27°C (range 83.0–100.0% survival) after 96 days of exposure, except for the non‐diapausing eggs on dry soil (66.3%). In regard to the exposure of egg populations to moderately cold temperatures (i.e. 8°C, 4°C and ?2°C) for periods of up to 16 days, survival rates for egg populations exposed to 8°C continued to remain relatively high (average >85%) for the remainder of the experimental exposure period (i.e. 96 days). Diapausing Ps. columbiae eggs were more tolerant (82.0% survival) to low temperatures (?2°C) than non‐diapausing eggs (2.4% survival) for 64 days, particularly at temperatures of and below 4°C. Diapausing and non‐diapausing eggs were similar in their ability to survive under high temperatures (34°C and 38°C). High soil moisture (30–40%) or substrate moisture (95% relative humidity) content appeared to enhance the ability of the mosquito eggs to survive both low and high temperature extremes.  相似文献   

9.
This article examines the abundance, life history, host‐plant relationships, and overwintering biology of Acyrthosiphon calvulus Ossiannilsson (Homoptera: Aphididae) as a precursor to understanding its rarity and potential response to a changing climate. Acyrthosiphon calvulus is restricted to a few scattered localities on the west coast of Spitsbergen, Svalbard, Norway, where it reproduces on Salix polaris WG (Salicaceae) and its taxonomically unrelated root parasite Pedicularis hirsuta L. (Scrophulariaceae). Acyrthosiphon calvulus overwinters as eggs. Hatching fundatrices give rise directly to males and oviparae, which mate and lay overwintering eggs. The life cycle is closely synchronized with the phenology of S. polaris and appears genetically programmed, lacking summer generations of viviparae. Alate forms are similarly unknown. The progeny sequence of fundatrices resulted in a sex ratio for the sexuales that is strongly female biased (3:1). Eggs hatch coincided with budburst in early June and fundatrices developed on the expanding leaves. Egg production by oviparae corresponded with leaf senescence in July and August. Overwintering egg survival was high, with supercooling points ranging from ?29 to ?40 °C, lower than the extreme winter minimum temperature recorded (?28 °C). Egg development and hatching occurred at or below 5 °C and sub‐zero temperatures were not required to break diapause. The scarcity and fragmented distribution of A. calvulus is discussed in the context of the ubiquity of its host plants on Spitsbergen.  相似文献   

10.
Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) is a key pest of grapes in Europe. It overwinters as a pupa in the bark crevices of the plant. Supercooling point (SCP) and low temperature survival was investigated in the laboratory and was determined using a cool bath and a 1 °C min?1 cooling rate. Freezing was fatal both to diapausing and non‐diapausing pupae. SCP was significantly lower in diapausing male (?24.8 °C) and female (?24.5 °C) pupae than in non‐diapausing ones (?22.7 and ?22.5 °C, respectively). Sex had no influence on SCP both for diapausing and non‐diapausing pupae. Supercooling was also not affected by acclimation. However, acclimation did improve survival of diapausing pupae at temperatures above the SCP. Survival increased as acclimation period increased and the influence was more profound at the lower temperatures examined. Diapausing pupae could withstand lower temperatures than non‐diapausing ones and lethal temperature was significantly lower than for non‐diapausing pupae. Freezing injury above the SCP has been well documented for both physiological stages of L. botrana pupae. Our findings suggest a diapause‐related cold hardiness for L. botrana and given its cold hardiness ability, winter mortality due to low temperatures is not expected to occur, especially in southern Europe.  相似文献   

11.
Although parasitoids ultimately kill their host, koinobiont parasitoids must protect not only themselves but also their hosts against extreme environments. In this study, the parasitism rate of Chilo suppressalis Walker (Lepidoptera: Pyralidae) was investigated, and the average body weights, supercooling points, and concentrations of glycerol (acting as a cryoprotectant) in the hemolymph were compared between parasitized and non‐parasitized larvae. Five species of koinobiont endoparasitoids parasitized the overwintering C. suppressalis larvae and the total parasitism rate was 47.6% (n = 1 537). Average body weight of parasitized larvae was significantly lower than that of non‐parasitized larvae, and the parasitism rate of the lighter group (20–30 mg) was highest. The supercooling point of parasitized C. suppressalis larvae (?15.7 ± 0.3 °C) was significantly lower than that of the non‐parasitized larvae (?14.3 ± 0.2 °C). In addition, supercooling points were not correlated with body weights between parasitized and non‐parasitized larvae, indicating that cold hardiness of parasitized larvae was enhanced by endoparasitoids. Furthermore, the concentration of glycerol in the hemolymph was significantly higher in parasitized larvae (205.0 ± 7.1 μmol ml?1) than in non‐parasitized larvae (169.8 ± 14.4 μmol ml?1), which suggests that the mechanism that decreases the supercooling point of parasitized larvae was associated with glycerol. All these results indicated that the cold hardiness of parasitized C. suppressalis larvae was enhanced by their endoparasitoids, which benefitted overwintering endoparasitoids.  相似文献   

12.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. The larvae live throughout winter in leaf petioles and stems. Winter temperatures might play an important role in survival during winter and hence population dynamics, yet to what degree is unknown. This study investigates the effect of exposure time, cold acclimation, and larval stage on survival at ?5 and ?10 °C. Exposure time at ?5 °C was 1, 2, 4, 8, 12, 16, and 20 days and 6, 12, 24, 36, 48, 72, 96, 120, and 144 h at ?10 °C. Mortality increased with increasing exposure time and was significantly lower for cold‐acclimated larvae. Estimated time until an expected mortality of 50% (LT50) and 90% (LT90) of larvae exposed to ?5 °C was 7.4 and 9.6 days (non‐acclimated) and 11.0 and 15.1 days (acclimated), respectively. Estimated LT50 for non‐acclimated and acclimated larvae exposed to ?10 °C was 32.6 and 70.5 h, respectively, and estimated LT90 66.8 and 132.2 h. Significant differences in mortality between larval stages were observed only at ?5 °C. When exposed to ?5 °C for 8 days, mortality of first and second instars was 81.2 and 51.3%, respectively. When exposed to ?10 °C for 2 days, mortality of first and second instars was 70.5 and 76.1%. Data on winter temperatures in Denmark from 1990 to 2013 showed that larvae were rarely exposed to a number of continuous days at ?5 or ?10 °C causing a potential larval mortality of 50–90%.  相似文献   

13.
Anastatus disparis (Ruschka) (Hymenoptera: Eupelmidae) is an egg parasitoid and considered a potential biological control agent of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Only male offspring of A. disparis emerge from single eggs of L. dispar in the laboratory, and A. disparis exhibits low parasitism on L. dispar in the field. We therefore selected several lepidopteran species with various body sizes to evaluate the optimal egg size for hosting A. disparis. In addition, we explored whether the nutritional content of a single L. dispar egg influences the sex of A. disparis offspring and why female offspring can be reared from L. dispar eggs in the field. The results indicated that host egg size decisively influenced the body size and sex ratio of the parasitoid offspring. Therefore, larger hosts, especially the largest eggs of Antheraea pernyi Guérin‐Méneville (Saturniidae), might increase the fitness of A. disparis females. Lymantria dispar eggs concealed in the larger egg shell of A. pernyi produced female A. disparis, suggesting that adult A. disparis should prefer hosts with larger bodies and that the nutritional content of L. dispar eggs did not play a decisive role in the sex allocation of A. disparis. The results also indicated that the egg mass and the fur cover of L. dispar egg masses might be the key factors inducing female A. disparis to lay female offspring in L. dispar eggs.  相似文献   

14.
Water hyacinth [Eichhornia crassipes (Mart.) Solms (Pontederiaceae)] is the most damaging aquatic weed in South Africa, where five arthropod biological control agents have been released against it. The most recent introduction of Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) has failed to establish permanent populations at a number of sites in South Africa where water hyacinth is a problem. Cold winter temperatures at these sites are assumed to be the reason for these establishment failures. This assumption was tested by investigating the thermal physiology of the mirid, then incorporating these data into various predictive distribution models. Degree‐day models predict 3–14 generations per year at different localities in South Africa, and five generations at a Johannesburg site where the mirid failed to overwinter. The inability to develop sufficiently rapidly during winter months may hinder overwintering of this insect, which was predicted to develop through only one generation during the winter months of April to August in Johannesburg. A CLIMEX model also showed that cold stress limits the mirid's ability to overwinter in the interior of the country, while determination of the lower lethal limit (–3.5 °C) and critical thermal minimum (1.2 ± 1.17 °C) also indicated that extreme temperatures will limit establishment at certain sites. It is concluded that E. catarinensis is limited in its distribution in South Africa by low winter temperatures.  相似文献   

15.
Supercooling point (SCP) and cold‐hardiness of the pollen beetle Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae) were investigated. Mature eggs from the oviduct were supercooled on average to ?28.0 °C and from oilseed rape buds to ?24.4 °C; first instars were supercooled to ?21.0 °C and second instars to ?16.8 °C. Despite their high supercooling ability, none of the eggs survived 24 h exposure to ?2.5 °C. The supercooling ability of adults varied significantly among feeding and non‐feeding beetles: high SCPs prevailed during the whole warm period, being about ?12 °C; low values of SCP of ?20 °C dominated in non‐feeding beetles. In spring and autumn, beetles displayed the same acclimation efficiency: after 1 week of exposure at 2.0 °C with no access to food their SCPs were depressed equally by about 3 °C. Meligethes aeneus beetles have a different response to low temperatures depending on the season. The lowest tolerance was found in reproductively active beetles after emergence from overwintering sites; the time needed to kill 50% of individuals (Ltime50) was 56.2 h at ?7 °C and the lower lethal temperature needed to kill 50% (Ltemp50) after 24 h exposure was ?8.6 °C. Cold hardiness increased from midsummer to midwinter; Ltime50 was 80 h in August, 182.8 h in September, and 418.1 h in January. Lethal temperature after 24 h exposure was ?9.1 °C in August and ?9.8 °C in September. In February, after diapause, the beetles started to loose their cold tolerance, and Ltemp50 was slightly increased to ?9.5 °C. Hibernating beetles tolerated long exposure at ?7 °C well, but mortality was high after short exposure if the temperature dropped below ?9 °C for 24 h. Despite the season, the beetles died at temperatures well above their mean SCP; consequently, SCP is not a suitable index for cold hardiness of M. aeneus.  相似文献   

16.
The invasive grasses Bromus rubens and Bromus tectorum are responsible for widespread damage to semiarid biomes of western North America. Bromus. tectorum dominates higher and more northern landscapes than its sister species B. rubens, which is a severe invader in the Mojave desert region of the American Southwest. To assess climate thresholds controlling their distinct geographic ranges, we evaluated the winter cold tolerance of B. tectorum and B. rubens. Freezing tolerance thresholds were determined using electrolyte leakage and whole‐plant mortality. The responses of the two species to winter cold and artificial freezing treatments were similar in 2007–2008 and 2009–2010. When grown at minimum temperatures of 10 °C, plants of both species had cold tolerance thresholds near ?10 °C, while plants acclimated to a daily minimum of ?10 to ?30 °C survived temperatures down to ?31 °C. In the winter of 2010–2011, a sudden severe cold event on December 9, 2010 killed all B. rubens populations, while B. tectorum was not harmed; all tested plants were 7–8 weeks old. Controlled acclimation experiments demonstrated that 8‐week‐old plants of B. rubens had a slower acclimation rate to subzero temperatures than B. tectorum and could not survive a rapid temperature drop from 1 to ?14 °C. Four‐month‐old B. rubens populations were as cold tolerant as B. tectorum. Our results show that severe and sudden freeze events in late autumn can kill young plants of B. rubens but not B. tectorum. Such events could exclude B. rubens from the relatively cold, Intermountain steppe biome of western North America where B. tectorum predominates.  相似文献   

17.
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub‐zero temperatures. Seasonal leaf water relations, non‐structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to ?13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub‐zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold‐acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.  相似文献   

18.
Abstract 1 The European pine sawfly, Neodiprion sertifer (Geoffroy) (Hymenoptera, Diprionidae), frequently defoliates Scots pine (Pinus sylvestris L.) forests in northern Europe. It overwinters as an egg. It has been proposed that the high egg mortality caused by low winter temperatures limits the occurrence of outbreaks to the southern part of Fennoscandia. 2 In this study, variation in freezing avoidance by egg supercooling between four Finnish populations (originating between latitudes 60°N and 69°N) of N. sertifer was tested by differential thermal analysis. Offspring of 20 females within each population were selected for the study. The freezing avoidance of parasitized eggs was also examined. 3 The northernmost Inari population was found to be the cold hardiest, and the southernmost (Hanko) was the least hardy population. The within‐population variation between females was greatest in the population from Inari, and the next greatest in the one from Hanko. The inland populations in Eastern Finland had the smallest within‐population variation in freezing avoidance. 4 The high variation in freezing avoidance of eggs will enable N. sertifer to adapt to the predicted climate change and to spread its distribution northwards. This may also change the risk for outbreaks in this area. Parasitized eggs froze at higher temperature than healthy eggs. This observation indicates that N. sertifer may experience reduced egg parasitism in certain winter climate conditions.  相似文献   

19.
Diapausing pharate first instars of the gypsy moth, Lymantria dispar, respond to high temperature (37–41°C) by suppressing normal protein synthesis and synthesizing a set of seven heat shock proteins with Mrs of 90,000, 75,000, 73,000, 60,000, 42,000, 29,000, and 22,000 as determined by SDS-PAGE. During recovery at 25°C from heat shock, synthesis of the heat shock proteins gradually decreases over a period of 6 h, while normal protein synthesis is restored. A subset of these same heat shock proteins is also expressed during recovery at 4°C or 25°C from brief exposures to low temperature (-10 to 20°C), and its expression is more intense with increased severity of cold exposure. During recovery at 4°C after 24 h at ?20°C, both 90,000 and 75,000 Mr heat shock proteins are expressed for more than 96 h. While normal protein synthesis is suppressed during heat shock and recovery from heat shock, normal protein synthesis coincides with synthesis of the heat shock proteins during recovery from low temperatures, thus implying that expression of the heat shock proteins is not invariably linked to suppression of normal protein synthesis. Western transfer, using a monoclonal antibody that recognizes the inducible form of the human 70,000 Mr heat shock protein, demonstrates that immunologically related proteins in the gypsy moth are expressed at 4°C and during recovery from cold and heat shock.  相似文献   

20.
The nun moth, Lymantria monacha L., is one of the most important defoliators of Eurasian coniferous forests. Outbreaks during 2011–2015 in the natural/planted larch, and larch‐birch mixed forests of the Greater Khingan Range in Inner Mongolia, China, caused tremendous timber losses from severe defoliation and tree mortality. A series of trapping experiments were conducted in these outbreak areas to evaluate the efficacy of a synthetic species‐specific pheromone lure based on the female pheromone blend of European nun moth populations. Our results clearly show that the nun moth in Inner Mongolia is highly and specifically attracted to this synthetic pheromone, with few gypsy moths (Lymantria dispar) captured. Flight activity monitoring of L. monacha male moths using pheromone‐baited Unitraps at 2 locations during the summer of 2015 indicated that the flight period started in mid‐July, peaking in early August at both locations. Based on male moth captures, there was a strong diurnal rhythm of flight activity throughout the entire scotophase, peaking between 22:00 and 24:00. Unitraps and wing traps had significantly and surprisingly higher catches than the gypsy moth traps. Unitraps fastened to tree trunks 2 m above ground caught significantly more male moths than those at the ground level or at 5 m height. Male L. monacha moths can be attracted to pheromone‐baited traps in open areas 150–200 m distant from the infested forest edge. Our data should allow improvement on the performance of pheromone‐baited traps for monitoring or mass‐trapping to combat outbreaks of this pest in northeastern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号