首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual traps like yellow sticky card traps are used for monitoring and control of the greenhouse whitefly (Trialeurodes vaporariorum). However, reflected intensity (brightness) and hence, attractiveness depend on the ambient light conditions, and the colour (wavelength) might not fit with the sensitivity of whitefly photoreceptors. The use of light emitting diodes (LEDs) is a promising approach to increase the attractiveness, specificity and adaptability of visual traps. We constructed LED‐based visual traps equipped with blue and green high‐power LEDs and ultraviolet (UV) standard LEDs according to the putative spectral sensitivities of the insects' photoreceptors. In a series of small‐scale choice and no‐choice recapture experiments, the factors time of day as well as light intensity and light quality (colour) of LED traps were studied in terms of attractiveness compared to yellow traps without LEDs. Green LED traps (517 nm peak wavelength) were comparably attractive in no‐choice experiments but clearly preferred over yellow traps in all choice experiments. The time of day had a clear effect on the flight activity of the whiteflies and thereby on the trapping success. Blue LEDs (474 nm) suppressed the attractiveness of the light traps when combined with green LEDs suggesting that a yet undetected photoreceptor, sensitive for blue light, and an inhibiting interaction with the green receptor, might exist in T. vaporariorum. In choice experiments between LED traps emitting green light only or in combination with UV (368 nm), the green‐UV combination was preferred. In no‐choice night‐time experiments, UV LEDs considerably increased whitefly flight activity and efficacy of trapping. Most likely, the reason for the modifying effect of UV is the stimulating influence on flight activity. In conclusion, it seems that the use of green LEDs alone or in combination with UV LEDs could be an innovative option for improving attractiveness of visual traps.  相似文献   

2.
The oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae), is an invasive pest of orchards around the world, particularly in Asian countries such as China. Light traps offer a potential means for pest monitoring and management. This study aimed to evaluate the sensitivity of the fly to light and investigate the impact of monochromatic light in the sensitivity spectrum on B. dorsalis. Six light wavelengths in LEDs – green (522 nm), yellow (596 nm), blue (450 nm), red (633 nm), purple (440 nm), and white (compound light) – were adapted to test responses of 5‐, 10‐, and 20‐day‐old B. dorsalis adults kept in laboratory conditions. We also tested the effects of green and red lights on pupal development and adults’ life activities. The results indicated a phototaxis preference rank in B. dorsalis adults to monochromatic LEDs with, in decreasing order, green, yellow, purple, blue, and red. Moreover, positive phototaxis significantly increased with age. Male adults are more sensitive than female adults to test lights, mainly at the age of 10 and 20 days. Emergence rates of pupae exposed to 12 and 24 h green light daily were 42 and 67%, respectively, whereas controls held in red light emerged at 33 and 37%, respectively. Furthermore, body weight, female fecundity, and mortality of B. dorsalis in night‐time exposure of green light (from 21:00 to 09:00 hours; during daytime flies were illuminated by white LED light) were significantly higher than in red‐light test groups and dark controls. In conclusion, B. dorsalis displayed preference toward green light, and fly age and gender seemed to significantly impact the phototactic behavior. Green LED light exposure during nighttime remarkably improved the emergence rates of B. dorsalis, and it enhanced growth, development, and ovipositing peak period, but decreased adult lifespan. This research lays a foundation for the development of new trap models, e.g., with green sticky cards or green light, for monitoring and control of B. dorsalis in the field.  相似文献   

3.
As the vector of the global disease of citrus greening or huanglongbing, Asian citrus pysllids, Diaphorina citri Kuwayama (Hemiptera: Liviidae), are the greatest threat to the worldwide citrus industry. Critical to management of D. citri and huanglongbing is optimization of surveillance methodologies. Although phytophagous insects may find host plants by multimodal cues, some appear to primarily use visual cues. In this study, we examined the behavior of Asian citrus psyllids toward light from light‐emitting diodes (LEDs) in the insect visible spectrum. The periodicity of attraction of psyllids to visual cues was evaluated in the field (yellow sticky traps) and laboratory (multi‐colored LEDs) with a strong peak of activity during the afternoon in both the field and the laboratory (both 14:00 to 18:00 hours). In laboratory evaluations of psyllids to differently colored LEDs, strongest attraction was to LEDs emitting ultraviolet (390 nm), green (525 nm), and yellow (590 nm) light. Male and female psyllids did not differ significantly in their responses to visual cues. These findings provide the basis for formulating better traps that reflect UV and yellow light and potentially incorporate UV LEDs for monitoring psyllids and a better understanding of Asian citrus psyllid visual behavior.  相似文献   

4.
瓢虫的趋光性反应研究   总被引:3,自引:0,他引:3  
以六斑月瓢虫Menochilus sexmaculata Fabricius和狭臀瓢虫Coccinella transversalis Fabricius为例,研究了瓢虫对不同光质(波长)的趋光性反应。在室内分别测定了六斑月瓢虫和狭臀瓢虫对5种发光二极管(LED)光波的趋性,以及在田间挂板(佳多)测定了瓢虫对色板的选择趋性。室内测定结果表明,瓢虫对黄色和白色LED光波的选择趋性显著高于与其它颜色;田间挂板试验表明,黄色对瓢虫的诱杀作用最强。综合分析,黄色对瓢虫有强烈的吸引作用,建议在使用黄板进行田间监测和防治时应考虑对天敌瓢虫的诱杀作用。  相似文献   

5.
《Journal of Asia》2023,26(3):102080
Light traps equipped with light emitting diodes (LEDs) have been applied to manage some phototactic insect pests. The diamondback moth, Plutella xylostella, is a cosmopolitan insect pest to be seriously harmful to many cruciferous plants. The present research focused on evaluating the phototactic behavior responses of the moths to several wavelengths and photon flux densities of LED lights under laboratory and field conditions. The results from the laboratory showed that the highest phototactic behavior responses of P. xylostella moths were recorded for UV (380 nm) LED light under 1.5 µmol m−2 s−1 and 2.5 µmol m−2 s−1. The moths were more attracted to light traps equipped with 4 LEDs and 6 LEDs of 380 nm, respectively, between 20:00 and 22:00 than the other groups and night times in the field. The finding from the field was consistent with the results from the laboratory. We found that the 380 nm LED light results in the strongest attraction rate of the moths by 92.4 % and the moths caught in light trap with the UV LEDs was 1.62 times more than that with a black light. These data clearly demonstrate that P. xylostella moths have a high sensitivity to 380 nm, therefore, a 380 nm LED light trap could be useful for monitoring and controlling the moths.  相似文献   

6.
Visual orientation in the greenhouse whitefly (Trialeurodes vaporariorum Westwood, Hemiptera: Aleyrodidae) is the result of “wavelength‐specific behaviours.” Green–yellow elicits “settling behaviour” while ultraviolet (UV) radiation initiates “migratory behaviour.” The only available physiological study of the photoreceptors' spectral efficiency showed peaks in the green and the UV range and whitefly vision was said to be dichromatic so far. In order to study the visual behaviour of T. vaporariorum, 19 narrow‐bandwidth light emitting diodes (LEDs) covering the UV‐A and visible range were used in combination with light scattering acrylic glass screens in a small‐scale choice arena under greenhouse conditions. Multiple‐choice and dual‐choice assays were performed, resulting in LED‐based behavioural action spectra of settling (green) and migratory behaviour (UV). A potential inhibitory blue–green chromatic mechanism was studied by combining yellow with different bluish LEDs. Intensity dependencies were illustrated by changing LED intensities. Regarding the “settling response,” highest attraction was achieved by a green LED with a centroid wavelength of 550 nm, while a blue LED with 469 nm proved to be most inhibitory. Besides this inhibitory interaction, an intensity dependence was observed within the action spectrum in the green–yellow range. “Migratory behaviour” was elicited the most by the UV LED with the shortest available wavelength of 373 nm. The results provide compelling behavioural evidence for the presence of a green and a yet undescribed blue sensitive photoreceptor and a blue–green opponent mechanism. Furthermore, empirical colour choice models were built and receptor peaks were estimated around 510–520 nm (green), 480–490 nm (blue) and 340–370 nm (UV). Consequently, a trichromatic receptor setup is suggested for T. vaporariorum.  相似文献   

7.
《Journal of Asia》2014,17(1):79-82
The light sensitivity of insects varies in response to different wavelengths of light. The change of light responses of vector insects plays an important role in the method of transmission and propagation of plant viruses. Here, we investigated whether the light attraction behaviors of whiteflies are altered by virus acquisition. Firstly, the light attraction rates of whiteflies were determined using LED light bulbs exhibiting different wavelengths in the visible and UV spectra. Whiteflies, Bemisia tabaci and Trialeurodes vaporariorum, were mostly attracted to green LEDs (526 nm). The attraction rate to green LED light was higher in B. tabaci than in T. vaporariorum, whereas it did not significantly differ between the B- and Q-biotypes of B. tabaci. Secondly, we investigated whether or not the green light attraction behavior of B. tabaci is influenced by the acquisition of Tomato yellow leaf curl virus (TYLCV). The attraction rate to green LED light was 2.5–3 times higher in TYLCV-infected whiteflies than in TYLCV-free whiteflies. However, this difference disappeared when the distance from the light source was greater than 0.5 m. Our results show that B. tabaci favors green light and its attraction is highly enhanced by the acquisition of the plant virus, TYLCV.  相似文献   

8.
The biting midge Culicoides sonorensis Wirth and Jones (Diptera: Ceratopogonidae) transmits pathogens to both livestock and wildlife. Biting midge surveillance relies heavily on light traps for collection; however, little is known about the light spectra preferences of C. sonorensis midges. A light assay arena was constructed and light‐emitting diodes (LEDs) of various light spectra were used as light sources to evaluate midge photoattraction. A comparison of responses to light spectra indicated the highest proportions of C. sonorensis were attracted to ultraviolet (UV) light and that midges differentiated 10‐nm differences in wavelength. Stronger intensities of UV light resulted in greater attraction. Midges exhibited both sugar‐seeking and escape behaviours under different conditions of sugar supplementation before and during the experiment. These behaviours occurred with lights of 355 nm and 365 nm in wavelength. Based on the results of this study, the attraction of C. sonorensis to light traps can be improved through the use of bright LEDs at 355 nm or 365 nm.  相似文献   

9.
To study the phototactic responses of white‐backed planthopper, Sogatella furcifera (Horváth) and brown planthopper, Nilaparvata lugens (Stål) to different wavelengths, four colours of light traps (blue, green, yellow and red light‐emitting diodes) were placed in the same rice field along with a traditional black light trap. This study revealed that S. furcifera and N. lugens are more attracted to blue and green lights than that to yellow and red lights. During the 24 nights, compared with the black light trap, the blue LED trap could catch more rice planthoppers at 17 nights. Furthermore, catches of other species (moths and beetles) were substantially reduced in blue LED light traps. Multiple regression models were developed to assess the effect of weather factors on light trap catches of rice planthoppers. Rainfall and mean air temperature at a night mainly affected light trap catches of S. furcifera. Higher rainfall and lower temperature increased light trap catches of S. furcifera. However, wind speed was the main factor affecting the catches of N. lugens, and the lower incidence of catches was found in the night when wind speed exceeded 3.08 m/s. S. furcifera may be flying against wind at light wind nights by 0.3–1.5 m/s, whereas N. lugens may be flying down at strong wind nights by 1.5–3.08 m/s. Relative humidity did not significantly influence on trap catches. Consequently, light wavelengths, precipitation, average temperature and wind should be considered when monitoring rice planthoppers by light traps. Therefore, the blue LED light traps are worth using for monitoring planthoppers.  相似文献   

10.
Bright yellow sticky rectangles made of paper boards were previously identified as the most effective traps for capturing western cherry fruit fly, Rhagoletis indifferens Curran (Dipt., Tephritidae). However, no data on the effectiveness of commercial sticky yellow plastic traps against R. indifferens have been reported. In tests conducted in sweet cherry trees [Prunus avium (L.) L.] in Washington state (USA) using ammonium carbonate as the chemical lure, commercial plastic ‘Yellow Sticky Strips’ made of translucent high‐impact polystyrene captured ~two or three times more flies than commercial sticky yellow‐folded Pherocon® AM and Alpha Scents boards. Yellow Sticky Strips also minimized captures of non‐target flies and bees per surface area compared with Pherocon®AM and/or Alpha Scents boards. Trap size and adhesive type were not factors for greater catches of R. indifferens. However, more flies were caught on the shade‐facing side of Yellow Sticky Strips, which was brightly illuminated, than on the shade‐facing side of boards, which was darker, suggesting differential light passage was a factor. The Yellow Sticky Strips could be very useful for monitoring Rindifferens in detection programmes and based on the results of this study can replace yellow boards. They are also useful because they are relatively unattractive to non‐target insects.  相似文献   

11.
Abstract  Light-emitting diodes (LEDs) were attached to plastic cup and sticky card traps to improve pest insect catches in the laboratory and in greenhouses. Plastic cup traps equipped with 530 nm lime green LEDs caught more adult Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius) biotype B compared with plastic cup traps alone. Yellow sticky card (YC) and clear plastic sticky card (CS) traps equipped with lime green LEDs (LED-YC and LED-CS, respectively) caught more adult T. vaporariorum, B. tabaci biotype B, Aphis gossypii (Glover) and Bradysia coprophila (Lintner) compared with unlit traps of each type in greenhouse cage studies with shell beans, Phaseolus vulgaris (L.) and cotton, Gossypium hirsutum (L.). The lime green LED equipped YC traps have potential for use in greenhouses for insect detection, monitoring, and control.  相似文献   

12.
绿黄色光二极管(LED)附加在塑胶杯和胶片捕捉器可增加捕捉实验室和温室中昆虫的数量。附加有530nm绿黄色LED的塑胶杯捕捉器比没有附加的捕捉到更多的Trialeurodes vaporariorum(Westwood)和Bemisia tabaci(Gennadius)B生态型。在温室中昆虫笼以四季豆和棉花试验,附加有530nm绿黄色LED的黄色胶片(YC)和透明塑胶片(CS)分别缩写为LED—YC和LED—CS)比每一种没有附加的捕捉器捕捉到更多的T.vaporariorum,B.tabaci B生态型,Ahis gossypii(Glover)和Bradysia coprophila(Lintner)成虫。绿黄色LED—YC在温室中有用为监测和控制的潜在性。  相似文献   

13.
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), is a diurnal insect that strongly relies on visual cues to guide its walk. In the present study, we investigated the orientation behavior of non‐diapausing walking CPB in response to emissive colors produced by light emitting diodes (LEDs) in a dual choice arena adapted to a servosphere, where the only illumination available came from the photo‐stimuli. Our results demonstrate that CPB show positive phototactic behavior when stimulated with different wavelengths of light; they preferred to orient towards white (420–775 nm), ultraviolet (UV) (351 nm), blue (472 nm), green (570 nm), yellow (585 nm), orange (590 nm), and red (660 nm) over darkness when both alternatives were offered, but no orientation responses were elicited by infrared (940 nm). Both males and females preferred yellow and green over other colors, but did not show any particular preference between them, thus correlating with their preference for wavelengths reflected by vegetation. Sexual differences were noted in that male CPB preferred white over either red or UV, whereas female CPB did not show any preferences when offered these colors. Female CPB preferred UV and blue over red, whereas males showed no preferences when these colors were offered. Colorado potato beetles turned at higher angles and performed more tortuous walks in complete darkness and when infrared vs. darkness were offered compared with the rest of the colored lights. Both sexes preferred continuous over pulsed yellow light. Colorado potato beetles subjected to pulsed yellow light showed a temporal alteration of their walking performance by walking less, slower, and turning at a higher rate. The results are discussed with regard to the role of color in the CPB attraction to host plants and conspecifics as well as the role of intermittent photic stimuli in their orientation behavior. The information provided here provides a basis for the improvement of trapping devices for detection and survey of incipient or invasive CPB, and development of alternate control strategies for this important pest of potatoes and other solanaceous crops.  相似文献   

14.
Fungus gnats (Bradysia impatiens) can be a serious pest especially to plants grown in confined areas, and although various methods of control are available, safer and more effective control measures are desirable. Mustard seed meal, a by‐product remaining after oil removal for use as a biodiesel feedstock, contains compounds called glucosinolates that hydrolyse to insecticidal 2‐propenyl isothiocyanate. Our objective was to produce a dose‐response curve for making recommendations of Brassica juncea seed meal applications that will result in fungus gnat larvae control. Twenty colony‐raised fungus gnat larvae were added to 20 g (226 per cm3) of potting media, and adult emergence monitored during 2 weeks using yellow sticky cards. Treatments included without meal, detoxified meal and 19 doses ranging from 0.05 to 3.0 g seed meal. A logistic model was used to predict an LC50 of 0.18 and an LC90 of 0.38 g seed meal for the 20‐g pot. The amounts of seed meal required to produce the observed LC50 and LC90 were predicted to produce 0.08 and 0.17 μmol 2‐propenyl isothiocyanate per cm3 potting medium, respectively. B. juncea seed meal has potential utility for the control of B. impatiens, thus warranting additional studies to determine the seed meal's chronic impact on fungus gnats, phytotoxicity and plant fertility benefits.  相似文献   

15.
The monitoring of insect pests in fields of forage maize is difficult because plants are tall and grow at a high density. We investigated the effectiveness of colored sticky traps and appropriate conditions for monitoring insect pests in forage maize fields. Large numbers of the maize orange leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), and the small brown planthopper, Laodelphax striatellus Fallen (Hemiptera: Delphacidae), were collected during the experimental period with yellow and blue sticky traps placed in summer crop forage maize fields. A greater number of insects were trapped in yellow traps relative to blue traps. Traps located at a lower height (40 cm above the ground) attracted larger numbers of C. bipunctata, whereas L. striatellus did not demonstrate a height-dependent preference. These results indicated that yellow-colored sticky traps located at low height are effective for collecting C. bipunctata and L. striatellus simultaneously. Seasonal occurrence data obtained by the yellow sticky traps showed clearer seasonal occurrences than that obtained by two previously developed methods, suction and light traps, indicating that sticky traps are effective for monitoring the seasonal occurrence of these two insects in forage maize fields.  相似文献   

16.
Insect attraction to artificial light can potentially facilitate disease transmission by increasing contact between humans and vectors. Previous research has identified specific wavelength bands, such as yellow and red, that are unattractive to biting flies. However, narrow-band, non-white lights are unsuitable for home lighting use as their very poor color rendering is often considered aesthetically undesirable. The creation of a white light that is unattractive to insects has so far remained elusive. White light can be created by combining a number of narrow-band light-emitting diodes (LEDs). Through choice chamber experiments on Culex pipiens (Cx. pipiens) mosquitoes, we examine whether combining specific wavelength bands has an additive, subtractive or synergistic effect on insect attraction. We show that a white light created by combining narrow-band red, green and blue (RGB) LEDs is less attractive to Cx. pipiens than a broad-spectrum white light; and that a white light created by combining narrow-band blue and yellow LEDs is more attractive than a broad-spectrum white light. White light produced by RGB combinations could therefore serve as a safer and cheaper light in countries where phototactic vectors and vector-borne disease are endemic.  相似文献   

17.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major citrus pest that transmits the bacteria Candidatus Liberibacter asiaticus and Ca. L. americanus associated with huanglongbing (HLB) disease. Diaphorina citri population densities can affect the effectiveness of its monitoring and sampling methods. Thus, we compared different methods for adult D. citri monitoring in groves with and without insecticide application programmes. Four short‐term experiments were carried out, each one lasting four consecutive weeks. In these experiments, sticky cards with different colours (yellow, light green, green and dark green), sweep net, two suction device models, visual inspection and stem tap sampling were assessed. Two long‐term experiments were conducted for 4.5 and 5 years, in which only yellow sticky card and visual inspection for D. citri monitoring were assessed. For the short‐term experiments, psyllids were detected by all monitoring methods during all sampling periods in areas without chemical control. However, in areas with psyllid control via fortnightly and monthly applications of insecticides, only sticky cards, regardless of their colour, were able to detect the presence of D. citri. Similarly, for the long‐term experiments, yellow sticky cards were more effective than visual inspection for detecting and quantifying D. citri in all areas with or without insecticide application. Therefore, in areas where HLB is present and chemical control of psyllid is required, sticky cards are the most reliable option for monitoring D. citri.  相似文献   

18.
The cigarette beetle, Lasioderma serricorne (Fabricius), is an important pest insect that consumes a variety of dry foods. It is known that UV light traps attract this species. However, less attention has been paid to its preferred wavelength. First, we investigated the spectral sensitivity of the compound eye. Next, we compared the attraction efficiency of LEDs of different colors (wavelengths). Our results showed that ultraviolet (UV, 375 nm) and blue (470 nm) LEDs attracted the most cigarette beetles of both sexes, irrespective of mating or oviposition status, although the UV LED consistently tended to attract the most beetles. Although the primary sensitivity peak of the compound eye was 520 nm, the green LED (520 nm) scarcely attracted beetles. Although the reason for the difference between the peaks in spectral sensitivity and attraction of beetles awaits further studies, whether UV and/or blue LEDs is more effective as a practical light trap for controlling L. serricorne beetle is discussed in this study.  相似文献   

19.
Field tests on attraction of Ctenarytaina thysanura (Hemiptera: Psyllidae) adults to different coloured 30×30 cm sticky traps revealed a preference for yellow. Among the enamel colours tested, more psyllids were captured on yellow traps followed by green, then blue and least on red, cyan and magenta. Dilution of yellow enamel with 50% white (1Y: 1W) and 75% white (1Y: 3W) to produce yellow-white hues resulted in a significant decrease in psyllid capture indicating that the psyllids response to yellow was one of positive attraction and could suggest true colour discrimination. Reflectance spectra of painted surfaces of the enamel colours and also yellow to white hues indicated that psyllid capture rates were directly related to the proportion of light reflected in the 500–560 nm region. The biological basis of the observed C. thysanura response may be that yellow is the most intensely reflective colour in the general part of the spectrum for leaves which reflect most light in the 500–600 nm (peak 550 nm) range.  相似文献   

20.
薛皇娃  吴伟坚 《昆虫学报》2013,56(2):161-166
利用害虫对不同颜色的趋性进行害虫防治, 如利用黄板对实蝇的监测和防治已有很长的历史, 然而尚未见把颜色量化进行实蝇对颜色偏嗜性研究的报道。为探明对瓜实蝇Bactrocera cucurbitae最具吸引力的颜色及其虚拟波长, 本试验应用Dan Bruton的虚拟波长与RGB值的函数关系, 把RGB值转换为虚拟波长; 选择RGB值[(0, 213, 255), (0, 255, 146), (54, 255, 0), (129, 255, 0), (195, 255, 0), (255, 255, 0), (255, 190, 0)和 (255, 119, 0)]的颜色进行打印, 这些颜色对应的虚拟波长分别是480, 500, 520, 540, 560, 580, 560和600 nm; 在八面体内进行瓜实蝇对8种颜色的偏嗜性试验。结果表明: 波长在520~560 nm 之间对应的颜色对瓜实蝇的吸引率高于其他虚拟波长对应的颜色, 而540 nm (黄绿色, RGB值为 129, 255, 0)对应的颜色纸对瓜实蝇的吸引率最大。此外田间颜色偏嗜性试验也证实了黄绿色对瓜实蝇有最强的引诱作用。结果说明, 黄绿色(虚拟波长540 nm)是吸引瓜实蝇的关键颜色, 黄绿色粘虫板可作为监测与防治瓜实蝇的一种有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号