首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Invasive species are one of the main sources of the ongoing global loss of biodiversity. Invasive ants are known as particularly damaging invaders and their introductions are often accompanied by population-level behavioural and genetic changes that may contribute to their success. Anoplolepis gracilipes is an invasive ant that has just recently received increased attention due to its negative impact on native ecosystems. We examined the behaviour and population structure of A. gracilipes in Sabah, Malaysia. A total of 475 individuals from 24 colonies were genotyped with eight microsatellite markers. Intracolonial relatedness was high, ranging from 0.37 to 1 (mean +/- SD: 0.82 +/- 0.04), while intercolonial relatedness was low (0.0 +/- 0.02, range -0.5-0.76). We compared five distinct sampling regions in Sabah and Brunei. A three-level hierarchical F-analysis revealed high genetic differentiation among colonies within the same region, but low genetic differentiation within colonies or across regions. Overall levels of heterozygosity were unusually high (mean H(O) = 0.95, mean H(E) = 0.71) with two loci being entirely heterozygous, indicating an unusual reproductive system in this species. Bioassays revealed a negative correlation between relatedness and aggression, suggesting kinship as one factor facilitating supercolony formation in this species. Furthermore, we genotyped one individual per nest from Sabah (22 nests), Sarawak (one nest), Brunei (three nests) and the Philippines (two nests) using two mitochondrial DNA markers. We found six haplotypes, two of which included 82.1% of all sequences. Our study shows that the sampled area in Sabah consists of a mosaic of differently interrelated nests in different stages of colony establishment. While some of the sampled colonies may belong to large supercolonies, others are more likely to represent recently introduced or dispersed propagules that are just beginning to expand.  相似文献   

3.
1. Ant colonies commonly have multiple egg‐laying queens (secondary polygyny). Polygyny is frequently associated with polydomy (single colonies occupy multiple nest sites) and restricted dispersal of females. The production dynamics and reproductive allocation patterns within a population comprising one polygyne, polydomous colony of the red ant Myrmica rubra were studied. 2. Queen number per nest increased with nest density and the number of adult workers increased with the number of resident queens and with nest density. This suggests that nest site limitation promotes polygyny and that workers accumulate in nest units incapable of budding. 3. Nest productivity increased with the number of adult workers and production per queen was independent of queen number. Productivity increased with nest density, suggesting local resource enhancement. This shows that productivity can be a linear function of queen numbers and that the limiting factor is not the egg‐laying capacity of queens. 4. The total and per capita production of reproductives decreased towards the periphery of the colony, suggesting that the spatial location of nest units affects sexual production. Thus nests at the periphery of the colony invested more heavily in new workers. This is consistent with earlier observations in plants and could either represent investment in future budding or increased defence. 5. The colony produced only five new queens and 2071 males, hence the sex ratio was extremely male biased.  相似文献   

4.
Ants are among the most successful species at invading new environments. Their success undeniably comes from their various modes of reproduction and colony breeding structures, which influence their dispersal ability, reproductive potential, and foraging strategies. Almost all invasive ant species studied so far form supercolonies, a dense network of interconnected nests comprising numerous queens, without aggression toward non‐nestmates. This strategy results in invasive colonies that are able to grow extremely fast and large while avoiding intraspecific competition, allowing them to monopolize environmental resources and outcompete native species. Here, we developed and used 10 microsatellite markers to investigate the population structure and breeding system of the dark rover ant Brachymyrmex patagonicus Mayr in its introduced range. We determined whether this species exhibits a supercolonial structure by assessing whether different nests belonged to the same genetic colony. We inferred its dispersal ability by investigating isolation by distance and estimated the numbers of queens per colonies and mating per queen through parent‐offspring inferences. We found that most of the colonies of B. patagonicus were comprised of a single nest, headed by a single queen. Each nest was distinct from one another, without isolation by distance, which suggests strong dispersal ability through nuptial flights. These features are commonly observed in noninvasive and native ant species, but they are surprising for a successful invasive ant, as they strongly differ from other invasive ants. Overall, we discuss how this seemingly unfavorable strategy for an invasive ant might favor the invasive success of the dark rover ant in the United States.  相似文献   

5.
We present primer sequences for eight polymorphic microsatellite loci for the formicine ant Anoplolepis gracilipes, a serious pest species in South‐East Asia and Pacific islands and still spreading on all continents. Microsatellite loci were isolated with a highly efficient method of enrichment. The number of alleles ranged from two to 19 with an observed heterozygosity ranging from 0.842 to 1.0. The markers were designed for a sociogenetic study as well as for population genetics.  相似文献   

6.
Cooperative social groups rely on the ability to distinguishmembers from nonmembers. Accordingly, social insects have evolveda variety of systems that allow discrimination of nest matesfrom non–nest mates. In this study, we show that experiencecan modify patterns of intraspecific aggression in Argentineants (Linepithema humile). In laboratory experiments, we foundthat aggression between colonies was often asymmetrical, butin all five cases, this asymmetry shifted to symmetrical aggressionafter contact with a hostile colony. Moreover, in the field,aggression between workers collected from colony borders wassymmetrical, whereas polarized aggression occurred between workerscollected 500 m away from colony borders. Coinciding with thisshift in aggression symmetry, we also observed an increase inboth the overall level of aggression and the frequency of aggressionin both the field and laboratory bioassays. We found littleevidence for colony-level competitive asymmetries stemming frompolarities in aggression at the worker level, either in thelaboratory or in the field. These results illustrate that recognitionsystems in Argentine ants are surprisingly dynamic and provideexperimental evidence for how recognition can be adjusted inresponse to specific circumstances—in this case the presenceof intraspecific competitors.  相似文献   

7.
We examined the nestmate discrimination ability of Diacamma sp., an ant that reproduces by colony budding. We also tested for a relationship between internest distance and hostility. Hostility toward non‐nestmates was significantly stronger than that toward nestmates, suggesting that Diacamma sp. discriminates between nestmates and non‐nestmates. There was no significant correlation between internest hostility and internest distance, which indicates the absence of a “dear enemy” phenomenon in this species.  相似文献   

8.
We report the characterization of eight microsatellite markers in the big-headed ant Pheidole megacephala, a pest ant registered in the list of '100 of the world's worst invasive alien species'. An enrichment protocol was used to isolate microsatellite loci, and polymorphism was explored with 36 individuals collected in an invasive population from Australia and 20 individuals collected in a population from the native mainland location in South Africa. These primers showed a number of alleles per locus ranging from two to 10, and expected heterozygosities ranging from 0.083 to 0.826. Moreover, results of cross-species amplification are reported in five other Pheidole species and in seven other ants of the subfamily Myrmicinae.  相似文献   

9.
1. Myrmica rubra (European fire ant) has invaded northern latitude coastal areas in North America. This macroscale distribution suggests that M. rubra is moisture‐ and temperature‐limited, but the distribution of the invaded range may reflect the legacy of original introduction locations preserved by limited dispersal. 2. This study examined a two‐decade population change in M. rubra (1994–2015) and the microscale abiotic (moisture and temperature), biotic (plants), anthropogenic (pesticide) and physiological (thermal tolerance) limits on the invasion at the Tifft Nature Preserve in Buffalo, NY (U.S.A.). Changes in the abundance of native ants and other invertebrates were also examined. 3. Despite localised declines with pesticide treatments, overall M. rubra forager abundance increased 27% between 1994 and 2015. Abundance increased the most in the warmest areas (native ants were unaffected by temperature), but M. rubra colony locations were strongly linked to higher soil moisture and lower soil temperature. Myrmica rubra ants also exhibited relatively low thermal tolerances consistent with high‐latitude and high‐elevation ants. 4. Where local M. rubra populations increased the most, native ant species decreased, and where local M. rubra populations declined, native ant species increased. Some arthropod species had lower abundance with M. rubra presence, but the impacts were less striking. 5. Myrmica rubra population growth was promoted at the microhabitat scale where relatively higher temperatures prompted foraging, and relatively lower temperatures and high moisture supported nesting. These results suggest that macroscale M. rubra invaded‐range distributions in northern climates near coastal areas are replicated at the microscale where the ant prefers cooler, moister microsites.  相似文献   

10.
We studied ocellated antbirds (Phaenostictus mcleannani) to test the hypothesis that reciprocal tolerance between dominant individuals can favour feeding in aggregations. Mated pairs hold large non-exclusive feeding ranges, but roost and nest in a small portion of this range (‘roosting area’); adjacent roosting neighbours are unrelated. Ocellated antbirds congregate to feed on arthropods fleeing from nomadic swarms of army ants that move across the ranges of many pairs. We used playback experiments to simulate acoustic challenges, and results showed that males responded aggressively to other males only in their roosting areas. Responses to adjacent neighbours were less aggressive than to non-neighbours (i.e. the ‘dear enemy’ effect). Prey intake rates were higher when birds fed in their own roosting area or in that of adjacent neighbours compared with more distant sites. Males tolerated adjacent neighbours at swarm fronts where prey are most dense, but more distant neighbours were displaced. Despite small samples for some analyses, our results suggest that reciprocal tolerance between adjacent unrelated neighbours can ameliorate intraspecific competition within ephemeral feeding aggregations.  相似文献   

11.
Myrmica rubra L. was introduced into New England in the early 20th century, and at present, has a patchy distribution in parts of northeastern North America, including records from 31 communities in Maine. M. rubra is highly polygynous, and colonies reproduce vegetatively, forming dense local populations where conditions are favorable. Using mobile nests and baited arenas in a series of field aggression bioassays, we tested patterns of internest tolerance within and among local populations on Mt. Desert Island, ME. We found that foragers originating from fragments of the same colony or from neighboring nests retained a high level of intraspecific tolerance over several months, whereas significant intercolony aggression among workers was present between colonies within the same local patch separated by approximately 10 m. Within populations, aggression score values were found to increase linearly with internest distance within a site. Aggression was highest between colonies from spatially different populations on the island and was higher still when nests were assayed against colonies at an off-island site 70 km away in Castine, ME. These data strongly suggest a multicolonial organization within and among local populations of M. rubra in parts of its introduced range. These findings contradict the loss of intraspecific aggression and unicolonial social structure over large geographic areas that have previously been observed in other invasive ant species, particularly Linepithema humile Mayr.  相似文献   

12.
Insect societies headed by multiple queens (polygyny) raise evolutionary questions, such as how does genetic heterogeneity among colony members affect in-nest interactions; or, are all queens equally reproductive or equally treated by workers? Answering such questions requires intensive and continuous observations of in-nest behavior. Here, we addressed these questions in the polygyne supercolonial ant, Cataglyphis niger, using a barcoding system that enables the tracking of individual interactions, together with polymorphic DNA microsatellite markers that indicate the matriline and patriline of all individuals. Our findings that both queens and workers have low interrelatedness corroborate earlier reports regarding the supercolony structure of C. niger. Ovary inspection and worker genotyping revealed that all the queens contribute similarly to nest demography. Tracking positions of individual workers through time revealed that only a small proportion of them are constantly engaged in tending the queens and can be considered as retinue workers. However, genotyping these workers and the attended queens revealed no relationship to genetic relatedness, again typical of a true polygyne and supercolonial species. Unlike invasive supercolonial species, C. niger is native to Israel, enabling us to address questions regarding the driving forces, other than kin selection, that stabilize this society.  相似文献   

13.
The distribution of food between members of a Myrmica rubra L. Society was investigated by varying the ratios of queens, workers and medium-sized larvae. Observations revealed patterns in colony behaviour which could be of importance in a polygyne system.
Queens had little effect upon the rate of food transmission, but the worker/larva ratio was of significance. Many workers effectively fed all larvae present in a colony, but a small number of workers fed only a few. If larvae and/or queens were in abundance, the workers were partly deprived of access to them. Competition between the queens and larvae for food and worker attention occurred when their numbers were high. In this situation, queens fed themselves while the workers cared for the larvae. The significance of overcrowding, not only upon the administration of food, but upon the queen effect acting on the workers to stimulate or inhibit worker egg-laying and brood-rearing, is discussed.  相似文献   

14.
Widely distributed Palearctic insects are ideal to study phylogeographic patterns owing to their high potential to survive in many Pleistocene refugia and-after the glaciation-to recolonize vast, continuous areas. Nevertheless, such species have received little phylogeographic attention. Here, we investigated the Pleistocene refugia and subsequent postglacial colonization of the common, abundant, and widely distributed ant Myrmica rubra over most of its Palearctic area, using mitochondrial DNA (mtDNA). The western and eastern populations of M. rubra belonged predominantly to separate haplogroups, which formed a broad secondary contact zone in Central Europe. The distribution of genetic diversity and haplogroups implied that M. rubra survived the last glaciation in multiple refugia located over an extensive area from Iberia in the west to Siberia in the east, and colonized its present areas of distribution along several routes. The matrilineal genetic structure of M. rubra was probably formed during the last glaciation and subsequent postglacial expansion. Additionally, because M. rubra has two queen morphs, the obligately socially parasitic microgyne and its macrogyne host, we tested the suggested speciation of the parasite. Locally, the parasite and host usually belonged to the same haplogroup but differed in haplotype frequencies. This indicates that genetic differentiation between the morphs is a universal pattern and thus incipient, sympatric speciation of the parasite from its host is possible. If speciation is taking place, however, it is not yet visible as lineage sorting of the mtDNA between the morphs.  相似文献   

15.
Key to the management of invasive species is an understanding of the scope of an invasion, the rate of proliferation and the rate at which invaded habitats become degraded. This study examines the spatial dynamics of high-density supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes , on Christmas Island, Indian Ocean, and the associated impacts at their boundaries. Since the early 1990s, A. gracilipes supercolonies have occupied over 30% of the 10,000 ha of rainforest on Christmas Island. Thirty-four discrete high-density supercolonies formed between 1989 and 2003, ranging in size across nearly three orders of magnitude from 0.9 to 787 ha. Supercolonies boundaries are diffuse, and ants were observed in low densities in some cases up to 200 m from the main high-density supercolony. The 13 boundaries examined were all dynamic over a 10–20 observation month period: nine boundaries expanded, and the maximum rate of spread was 0.5 m day−1. Across boundary transition zones, between high-density supercolonies and intact rainforest, yellow crazy ants reduced other ant species richness, occupied red crab burrows and killed resident red crabs, which was the trigger for 'invasional meltdown' on Christmas Island. The highly variable and unpredictable nature of A. gracilipes boundaries poses a challenge for incorporation into a predictive framework, as well as for their management.  相似文献   

16.
Summary. The diaspores of many plant species are adapted to dispersal by ants (myrmecochory). The ants carry the diaspores into their nests where the appendages of the diaspores (elaiosomes) are consumed. Little is known, however, about the fate of diaspores in the colony, i.e., whether elaiosomes are consumed only by the larvae or also by the workers. In this study, the distribution of Corydalis cava (Fumariaceae) elaiosomes was monitored between the larvae and the working caste of laboratory colonies of Myrmica rubra (Formicidae, Myrmicinae). In the first part of the study, 15N labelled elaiosomes were found to be mainly consumed by larvae. To find out whether elaiosomes are a more attractive food source than an artificial, nutritionally optimized diet for ants (Bhatkar diet), a combined 13C and 15N labelling experiment was conducted. Ants were offered 15N labelled elaiosomes for two days (pulse labelling), while being continuously fed with 13C labelled Bhatkar diet over 19 days. Under the given laboratory conditions, elaiosomes proved to be a far more attractive diet for the larvae than Bhatkar diet, contributing 87 ± 2% of the daily nitrogen and 79 ± 3% of daily carbon incorporation of larvae during the first four days of the experiment. The mean elaiosome incorporation met 73 ± 5% of nitrogen and 63 ± 6% of carbon demand of workers during the first four days of the experiment. Generally, incorporation rates in workers (per dry body mass) were lower both for carbon and nitrogen during the experiment – by a factor of 6.8 for nitrogen and by a factor of 6.2 for carbon compared to larvae. On a colony basis, workers received 39% and larvae 61% of the elaiosome nitrogen. The results indicate that elaiosomes are a major food source for growing larvae and thus support the hypothesis that elaiosomes play an important role in the life cycle of temperate ants.Received 22 December 2003; revised 16 June 2004; accepted 22 June 2004.  相似文献   

17.
Most interactions between individuals of social insects occur in colonies. The correct identification of colonies is therefore crucial for most empirical studies which aim to test evolutionary theories based on properties at the colony level. In many ant populations, the identification of colonics is hampered by polydomy, i.e. that single colonics occupy several, spatially separated nests. Only few attempts have been made so far to develop genetical methods for analysing the structure of specific colonics. Three methods to solve this problem are presented: rare genotype sisterhoods (tracking rare genotypes or alleles), G -distance (a measure of genotypic heterogeneity derived from G -statistics), and neighbour relatcdness (estimates of genetic relatcdness for specific nest pairs). Our methods quantify the likelihood of nest pairs being con-colonial or non-colonial, and given sufficient genetical resolution, statistical tests can be applied. The methods proposed here arc applied to a highly polygynous population of the red ant, Myrmica sulcinodis. In this population single colonics are found to inhabit 1–4 nests, and both monodomous and polydomous colonies coexist in dense clusters of nests. This result is discussed with respect to the functional significance of polydomy. Further, the general application of the methods for determination of colony structure is discussed.  相似文献   

18.
Despite the mitochondrion's long‐recognized role in energy production, mitochondrial DNA (mtDNA) variation commonly found in natural populations was assumed to be effectively neutral. However, variation in mtDNA has now been increasingly linked to phenotypic variation in life history traits and fitness. We examined whether the relative fitness in native and invasive common wasp (Vespula vulgaris) populations in Belgium and New Zealand (NZ), respectively, can be linked to mtDNA variation. Social wasp colonies in NZ were smaller with comparatively fewer queen cells, indicating a reduced relative fitness in the invaded range. Interestingly, queen cells in this population were significantly larger leading to larger queen offspring. By sequencing 1,872 bp of the mitochondrial genome, we determined mitochondrial haplotypes and detected reduced genetic diversity in NZ. Three common haplotypes in NZ frequently produced many queens, whereas the four rare haplotypes produced significantly fewer or no queens. The entire mitochondrial genome for each of these haplotypes was sequenced to identify polymorphisms associated with fitness reduction. We found 16 variable sites; however, no nonsynonymous mutation that was clearly causing impaired mitochondrial function was detected. We discuss how detected variants may alter secondary structures, gene expression or mito‐nuclear interactions, or could be associated with nuclear‐encoded variation. Whatever the ultimate mechanism, we show reduced fitness and mtDNA variation in an invasive wasp population as well as specific mtDNA variants associated with fitness variation within this population. Ours is one of only a few studies that confirm fitness impacts of mtDNA variation in wild nonmodel populations.  相似文献   

19.
The ecological success of ants has made them abundant in most environments, yet inter‐ and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non‐nestmates. Native to South America, Brachymyrmex patagonicus has recently invaded many locations worldwide, with invasive populations described as extremely large and dense. Yet, in contrast with most invasive ants, this species exhibits a multicolonial structure, whereby each colony occupies a single nest. Here, we investigated the interplay between genetic diversity, chemical recognition, and aggressive behaviors in an invasive population of B. patagonicus. We found that, in its invasive range, this species reaches a high nest density with individual colonies located every 2.5 m and that colony boundaries are maintained through aggression toward non‐nestmates. This recognition and antagonism toward non‐nestmates is mediated by chemical differentiation between colonies, as different colonies exhibit distinct chemical profiles. We highlighted that the level of aggression between colonies is correlated with their degree of genetic difference, but not their overall chemical differentiation. This may suggest that only a few chemical compounds influence nestmate recognition in this species or that weak chemical differences are sufficient to elicit aggression. Overall, this study demonstrates that invasive ant populations can reach high densities despite a multicolonial structure with strong aggression between colonies, raising questions about the factors underlying their ecological success and mitigating negative consequences of competitive interactions.  相似文献   

20.
Summary. Ants have the capacity to reach unusually high densities, mostly in their introduced ranges. Numerical dominance is often cited as key to the ability of exotic ants to displace native ant species, reduce the abundance of invertebrates and negatively impact upon bird, land crab and other vertebrate populations. On Christmas Island, Indian Ocean, the yellow crazy ant, Anoplolepis gracilipes (Jerdon), forms supercolonies, where extremely high densities of foraging ants have contributed to ‘invasional meltdown’ in rainforest areas. Densities of up to 2254 foraging ants per m2 and a biomass of 1.85 g per m2 were recorded, and nest densities reached 10.5 nest entrances per m2. Populations of A. gracilipes can overcome and kill red endemic land crabs (Gecarcoidea natalis) over 100 times their own biomass. This is the highest recorded density of foraging ants, and adds another element to the definition of ‘supercolony’ of unicolonial ants. This paper documents one extreme in a continuum of densities of unicolonial, invasive ant species and highlights the need to incorporate forager densities into invasive ant research.Received 17 November 2004; revised 14 February 2005, accepted 21 February 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号