首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multichannel feeding, whereby consumers feed across resource channels such as upon herbivore and detritivore resources, acts to link discrete compartments of a food web with implications for ecosystem functioning and stability. Currently however, we have little understanding which feeding strategies of consumers underlie multichannel feeding. We therefore link spider functional group and resource density‐dependent or density‐independent feeding strategies to multichannel feeding by quantifying not only consumer diet, but also the relative availability of resources. Here we analysed herbivore (green) and detritivore (brown) prey use by spider communities in grasslands, and tested if available prey biomass proportions were linked to observed spider dietary proportions. Different spider functional groups each linked green and brown resource channels, but while green prey were always consumed in proportion to their relative biomass, brown prey were consumed independently of proportion by some functional groups. Additionally, we found greater intraguild predation by cursorial spiders when green resources were relatively scarcer, suggesting green prey was preferred, and needed to be compensated for when rare. Overall, we observed a stronger consumer connection to the green than brown resource channel, yet this green connection was more variable due to greater range in green resource availability across grasslands and density‐dependent consumption on green prey. Consequently, multichannel feeding by spiders was determined by density‐dependent and density‐independent feeding strategies that varied by spider functional group and across resources channels. Our results demonstrate that the role of multichannel feeding by spiders in linking separate food web compartments is a dynamic component of food web structure in these wild grasslands.  相似文献   

3.
Some species of web building spiders use different capture tactics for different prey types. The main factors influencing the attack behaviour are the ability of the insect to escape, the risks of injury to the spiders and prey size. This study evaluated the effects of size and prey type on prey capture behaviour of the social spider Anelosimus eximius as influenced by the number of spiders attracted by prey movements that did not bite until the immobilization (bystanders) and the number of spiders that contributed to prey immobilization (catchers). We carried out a two‐factor (prey size and type) experiment offering prey belonging to four orders: Diptera, Lepidoptera, Hymenoptera and Orthoptera, in a size gradient within each prey type. Both factors influenced the number of spiders recruited as bystanders, but only prey body size influenced the number of catchers in the subduing process. The possible advantages of the presence of bystanders around the interception site are discussed.  相似文献   

4.
Spiller DA  Schoener TW 《Oecologia》1990,83(2):150-161
Summary To determine the effect of lizards on webspider populations, we conducted a long-term field experiment in the Bahamas. Numbers of spider individuals were about 3 times higher in lizard-removal enclosures than in control enclosures with natural densities of lizards. Dietary analyses showed that lizards ate spiders and that lizard and spider diets overlapped substantially. Lizards reduced biomass of prey consumed by spiders; details indicated that they reduced biomass of large (> 4 mm) prey consumed by spiders more than biomass of small (4 mm) prey. Similarly, lizards reduced biomass of large aerial arthropods caught in sticky traps but not biomass of small aerial arthropods. We found no evidence that the lizard effect on prey consumption by spiders was caused by a spatial shift from areas with high aerial arthropod abundance to areas with low aerial arthropod abundance. Lizards reduced adult female cephalothorax width and fecundity of spiders. In a separate experiment, food-supplemented spiders were more fecund than control spiders. This study indicates that the interaction between lizards and spiders includes both predation and competition for food.  相似文献   

5.
This study focuses on the predatory capacity of four sympatric species of web- building spiders that inhabit coffee plantations in Southern Mexico: Gasteracantha cancriformis, Cyclosa caroli, and the morphologically similar species pair Leucauge mariana and L. venusta which were considered as one species group. The retention capabilities of the webs of these species and the incidence of prey capture and consumption were measured using eight types of insect prey belonging to the orders Coleoptera (1 species), Hymenoptera (3), Diptera (2) Lepidoptera (1) and Homoptera (1). The different characteristics of each prey such as body weight, body size, defensive behaviour, etc., were recorded. The incidence of prey retention, capture and consumption were significantly higher in G. cancriformis than in any of the other species. The lowest rates of retention, capture and consumption were observed in C. caroli, while L. mariana/venusta were intermediate in their predatory capabilities. Significant negative correlations between prey size and percent consumption were detected in L. mariana/venusta and in G. cancriformis; in both cases, large prey were less likely to be immediately consumed than small prey items. The results can be interpreted in the light of the morphological characteristics of the spiders. G. cancriformis possesses long legs and a carapace and appeared to have few difficulties to manipulate all types of prey. In contrast, C. caroli showed lesser abilities to manipulate and subdue aggressive prey items, perhaps due to the short leg length and unprotected body of this species. The consumption of prey items may be related to the predatory strategy of each spider. G. cancriformis constructs a new web every morning and prey storage was never observed. The absence of prey storage behaviour could explain why this species consumes prey soon after capture. In contrast, C. caroli constructs a permanent web and stores captured prey on a stabilimentum that may explain the very low incidence of immediate consumption of prey observed in this species.  相似文献   

6.
Conspicuous colouration attracts prey to a stationary predator   总被引:1,自引:0,他引:1  
Abstract 1. Conspicuous body colouration is counter‐intuitive in stationary predators because sit‐and‐wait tactics frequently rely on concealed traps to capture prey. Consequently, bright colours and contrasting patterns should be rare in predators using traps as they may alert potential prey. Yet, some orb‐weaving spiders are brightly coloured and contrastingly patterned. How can conspicuousness of trap‐building sit‐and‐wait predators be favoured by natural selection? 2. Observations of spiny spiders Gasteracantha fornicata in north‐eastern Australia showed that the size of spiders relative to their orb webs correlated positively with relative prey numbers already captured in their webs. A possible explanation is that the relatively larger appearance of the yellow–black striped dorsal surface of this spider attracts more visually oriented prey items. Prey attracted to webs may get trapped, thereby increasing the spiders' foraging success. 3. To test this hypothesis for the function of conspicuous body colouration, a field experiment was conducted that documented the prey capture rates of spiny spiders after manipulating or sham‐manipulating their appearance. 4. As predicted, spiders that were dyed black on their striped dorsal surface caught relatively fewer prey items than did control spiders. Thus, conspicuous dorsal body colouration may be adaptive in spiny spiders because it increases foraging success and, presumably, survival rates and reproductive outputs. Overall, these data support the colour‐as‐prey‐attractant hypothesis in a stationary, trap‐building predator.  相似文献   

7.
To effectively balance investment in predator defenses versus other traits, organisms must accurately assess predation risk. Chemical cues caused by predation events are indicators of risk for prey in a wide variety of systems, but the relationship between how prey perceive risk in relation to the amount of prey consumed by predators is poorly understood. While per capita predation rate is often used as the metric of relative risk, studies aimed at quantifying predator-induced defenses commonly control biomass of prey consumed as the metric of risk. However, biomass consumed can change by altering either the number or size of prey consumed. In this study we determine whether phenotypic plasticity to predator chemical cues depends upon prey biomass consumed, prey number consumed, or both. We examine the growth response of red-eyed treefrog tadpoles (Agalychnis callidryas) to cues from a larval dragonfly (Anax amazili). Biomass consumed was manipulated by either increasing the number of prey while holding individual prey size constant, or by holding the number of prey constant and varying individual prey size. We address two questions. (i) Do prey reduce growth rate in response to chemical cues in a dose dependent manner? (ii) Does the magnitude of the response depend on whether prey consumption increases via number or size of prey? We find that the phenotypic response of prey is an asymptotic function of prey biomass consumed. However, the asymptotic response is higher when more prey are consumed. Our findings have important implications for evaluating past studies and how future experiments should be designed. A stronger response to predation cues generated by more individual prey deaths is consistent with models that predict prey sensitivity to per capita risk, providing a more direct link between empirical and theoretical studies which are often focused on changes in population sizes not individual biomass.  相似文献   

8.
Prey quality can have large impacts on the survival, growth and behavior of predators. A number of studies have examined how different species of prey vary in quality. However, far less is known about intraspecific variation in the quality of prey for predators and even less about what nutrients are extracted from prey by predators. We examined how the sex, feeding level and developmental status of prey affected the quantities of nutrients present in prey bodies and the quantities of nutrients that could be extracted from prey by spiders. Female and well‐fed prey were larger and had more nutrients than male and food‐limited prey, respectively. After taking into account differences in prey size, spiders extracted relatively more lipid and less protein from female and well‐fed prey than from male and food‐limited prey, respectively. Mealworms were of higher quality than adult mealworm beetles; spiders were able to extract more lipid, protein and other nutrients from larvae than adults. While lipid present in prey was a good predictor of lipid consumed, protein present in prey was not a reliable predictor of protein consumed. The variation in prey quality that we observed within a single species of prey (i.e. well‐fed vs food‐limited crickets) was as large as variation in quality among the three species of prey used in these experiments. Intraspecific variation in prey quality may be an important factor affecting predatory arthropods, especially in habitats or at times of year when one species of prey is abundant. Further studies are needed to examine the consequences of intraspecific variation in prey quality on the life history and behavior of predators.  相似文献   

9.
  1. Generalistic interactions between predator and prey may vary with ecosystem type, predator traits, and prey traits, but the interplay of these factors has not been assessed in ground food webs.
  2. We investigated trophic interactions of ground-dwelling spiders across eight forests in European Russia associated with body size, hunting strategy, microhabitat specialization, potential prey type, potential prey population density, and forest type (coniferous vs. broadleaved). We analyzed 128 individual spiders, including juveniles, all identified to the family level with two complementary methods: molecular gut content analysis, and stable isotope analysis of carbon and nitrogen.
  3. The results suggest that feeding frequency of spiders is affected by predator body size and by selection of certain prey type. Stable isotope analysis showed similar trophic niches among spider families, varying moderately with forest type. Larger spiders had higher Δ13C values than smaller ones, but similar Δ15N values, suggesting that different size classes of spiders belong to different food chains. Results based on stable isotope and molecular gut content analyses were weakly linked, indicating them targeting different trophic niche dimensions.
  4. At least for the group-level interactions, family identity and hunting strategy of predator has little predictive power while predator body size and prey traits affected trophic niche dimensions calling for future studies in this direction. Large spiders feed more and rely on different basal resources than small spiders, suggesting that including small species and juveniles provides a more comprehensive picture of food web organization.
  相似文献   

10.
Trophic interactions may strongly depend on body size and environmental variation, but this prediction has been seldom tested in nature. Many spiders are generalist predators that use webs to intercept flying prey. The size and mesh of orb webs increases with spider size, allowing a more efficient predation on larger prey. We studied to this extent the orb‐weaving spider Araneus diadematus inhabiting forest fragments differing in edge distance, tree diversity, and tree species. These environmental variables are known to correlate with insect composition, richness, and abundance. We anticipated these forest characteristics to be a principle driver of prey consumption. We additionally hypothesized them to impact spider size at maturity and expect shifts toward larger prey size distributions in larger individuals independently from the environmental context. We quantified spider diet by means of metabarcoding of nearly 1,000 A. diadematus from a total of 53 forest plots. This approach allowed a massive screening of consumption dynamics in nature, though at the cost of identifying the exact prey identity, as well as their abundance and putative intraspecific variation. Our study confirmed A. diadematus as a generalist predator, with more than 300 prey ZOTUs detected in total. At the individual level, we found large spiders to consume fewer different species, but adding larger species to their diet. Tree species composition affected both prey species richness and size in the spider''s diet, although tree diversity per se had no influence on the consumed prey. Edges had an indirect effect on the spider diet as spiders closer to the forest edge were larger and therefore consumed larger prey. We conclude that both intraspecific size variation and tree species composition shape the consumed prey of this generalist predator.  相似文献   

11.
Synopsis Stomach contents of juvenile coho,Oncorhynchus kisutch, and chinook,O. tshawytscha, salmon collected in purse seines off the coast of Washington and Oregon were examined for variations related to predator size. There was a general trend toward increasing consumption of fish with increasing body size, due mainly to the increase in northern anchovy biomass consumed by the larger salmon. Most of the major prey taxa showed significant differences among the size classes examined for both salmon species. There was a direct relationship between predator and prey size for both coho and chinook, but considerable variation was found in prey length consumed within each size class. Prey width did not provide as good a fit as prey length for either species. In general, coho consumed larger fish prey in relation to their body length than chinook but there were substantial differences by month or year of collection.  相似文献   

12.
The link between poor reproductive success and diet was investigated in yellow‐eyed penguins Megadyptes antipodes, by assessing diet at two localities separated by about 30 km: the north coast of Stewart Island where breeding success is low (0.38–0.67 chicks per pair in recent years), and Codfish Island where breeding success is higher (0.96–1.51 chicks per pair), and relating this to published data from South Island localities, where average breeding success was 1.1 chicks per pair. Diet composition, meal sizes and energetic content of meals and prey were determined from stomach contents, and stable isotope analyses of chick down, fledgling feathers and adult blood provided information on diet throughout the fledging period. The high proportion of stomachs that were empty or lacked diagnostic remains reduced sample size considerably, and variability between samples reduced the power to detect significant differences in meal size, proportions of empty stomachs and prey diversity of meals. Energetic content of Stewart Island meals was less than Codfish Island meals, and there was a non‐significant trend for smaller meal sizes and reduced prey diversity among Stewart Island samples. Both localities had lower prey diversity and smaller meals than South Island penguins. Blue cod Parapercis colias accounted for 99% of prey biomass in Stewart Island and 70% in Codfish Island stomach samples, where 27% of prey biomass was opalfish Hemerocoetes monopterygius. Isotopic mixing models carried out on larger sample sizes indicated that opalfish comprised a large proportion of the diet at both locations, with adults selectively provisioning chicks with opalfish while feeding mainly on blue cod themselves. We suggest the large blue cod consumed by Codfish Island and Stewart Island penguins, larger than those consumed by South Island penguins, is difficult to transfer to chicks by regurgitation. Oyster dredging around Stewart Island may have reduced the availability and abundance of alternative prey to Stewart Island penguins.  相似文献   

13.
Abstract  The estimation of arthropod biomass is often important in studies of terrestrial ecosystem structure and function, including analyses of the relative importance of different arthropod taxa in the diet of insectivorous animals. In order to estimate arthropod biomass in eucalypt woodlands and rehabilitated mine-land in the monsoonal tropics of northern Australia, insect morpho-species ( n  = 693) and spider morpho-species ( n  = 100) were collected, sorted, then weighed and measured. Body length–weight regressions were determined for spiders, nine insect orders and all insects combined. There was a significant relationship between body length and weight for all taxonomic groups, with the power model being a better predictor than linear or exponential models for all groups except Diptera (which was best predicted by the linear model). Whilst Schoener (1980) found that the length–weight regression slopes of neotropical insects (all orders combined, as well as several individual orders) differed from those of their temperate North American counterparts, our comparisons between monsoon-tropical and temperate Australian arthropods suggested differences among Dipterans and spiders only. We conclude that generalised regressions provide adequate estimates of arthropod biomass across Australia, providing that the body proportions of the dominant taxa do not vary substantively.  相似文献   

14.
We examined the relationship between body size of the riparian spider Nephila clavata and the contribution of allochthonous (aquatic insects) and autochthonous (terrestrial insects) sources to its diet using stable isotope analysis. During the study period from July to September, the body size of the females increased remarkably (about 60-fold) but that of males remained small. The biomass of both aquatic and terrestrial insects trapped on the spider webs increased with spider size, with the biomass of the former ranging between 30 and 70% of that of the terrestrial insects. The average relative contribution of aquatic insects to the diet of the spiders, calculated from δ13C values, was 40–50% in spiders in the early juvenile and juvenile stages, 35% in adult males and 4% in adult females. There was a significant negative relationship between the relative contribution of aquatic insects and body size of the female spiders. We conclude that aquatic insects might be an important seasonal dietary subsidy for small spiders and that these allochthonous subsidies may facilitate the growth of riparian spiders, which may in turn enable the spiders to feed on larger prey.  相似文献   

15.
Conservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non-pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morphologies, included well-defended arthropods, and their potential use as natural enemies of several pests in South American crops.  相似文献   

16.
Trophic level scales positively with body size in fishes   总被引:1,自引:0,他引:1  
Aim The existence of a body size hierarchy across trophic connections is widely accepted anecdotally and is a basic assumption of many food‐web models. Despite a strong theoretical basis, empirical evidence has been equivocal, and in general the relationship between trophic level and body size is often found to be weak or non‐existent. Location Global (aquatic). Methods Using a global dataset for fishes ( http://www.fishbase.org ), we explored the relationship between body size and trophic position for 8361 fishes in 57 orders. Results Across all species, trophic position was positively related to maximum length (r2= 0.194, b= 0.065, P < 0.0001), meaning that a one‐level increase in trophic level was associated with an increase in maximum length by a factor of 183. On average, fishes in orders that showed significantly positive trophic level–body size relations [mean = 51.6 cm ± 11.8 (95% confidence interval, CI)] were 86 cm smaller than fishes in orders that showed no relation [mean = 137.1 cm ± 50.3 (95% CI), P < 0.01]. A separate slopes model ANCOVA revealed that maximum length and trophic level were positively correlated for 47% (27 of 57) of orders, with two more orders showing marginally non‐significant positive relations; no significant negative correlations were observed. The full model (order × body size) explained 37% of the variation between body size and trophic position (P < 0.0001). Main conclusions Our results support recent models which suggest that trophic level and body size should be positively correlated, and indicate that morphological constraints associated with gape limitation may play a stronger role in determining body size in smaller fishes. Differences among orders suggest that the nature of the trophic level–body size relation may be contingent, in part, on evolutionary history.  相似文献   

17.
Animal body coloration serves several functions such as thermoregulation, camouflage, aposematism, and intraspecific communication. In some orb‐web spiders, bright and conspicuous body colours are used to attract prey. On the other hand, there are other species whose body colour does not attract prey. Using a spider species showing individual body‐colour variation, the present study aimed to determine whether or not the variation in body colour shows a correlation with predation rates. We studied the orb‐web spider (Cyclosa argenteoalba) using both field observations and T‐maze experiments, in which the prey were exposed to differently coloured spiders. Cyclosa argenteoalba has silver‐ and black‐coloured areas on its dorsal abdomen, with the ratio of these two colours varying continuously among individuals. The bright and conspicuous silver area reflects ultraviolet light. Results of both field observations and colour choice experiments using Drosophila flies as prey showed that darker spiders have a greater chance of capturing prey than silver spiders. This indicates that body‐colour variation affects predation success among individuals and that the bright silver colour does not function to attract prey in C. argenteoalba.  相似文献   

18.
Food web structure and dynamics depend on relationships between body sizes of predators and their prey. Species‐based and community‐wide estimates of preferred and realized predator–prey mass ratios (PPMR) are required inputs to size‐based size spectrum models of marine communities, food webs, and ecosystems. Here, we clarify differences between PPMR definitions in different size spectrum models, in particular differences between PPMR measurements weighting prey abundance in individual predators by biomass (rbio) and numbers (rnum). We argue that the former weighting generates PPMR as usually conceptualized in equilibrium (static) size spectrum models while the latter usually applies to dynamic models. We use diet information from 170,689 individuals of 34 species of fish in Alaskan marine ecosystems to calculate both PPMR metrics. Using hierarchical models, we examine how explained variance in these metrics changed with predator body size, predator taxonomic resolution, and spatial resolution. In the hierarchical analysis, variance in both metrics emerged primarily at the species level and substantially less variance was associated with other (higher) taxonomic levels or with spatial resolution. This suggests that changes in species composition are the main drivers of community‐wide mean PPMR. At all levels of analysis, relationships between weighted mean rbio or weighted mean rnum and predator mass tended to be dome‐shaped. Weighted mean rnum values, for species and community‐wide, were approximately an order of magnitude higher than weighted mean rbio, reflecting the consistent numeric dominance of small prey in predator diets. As well as increasing understanding of the drivers of variation in PPMR and providing estimates of PPMR in the north Pacific Ocean, our results demonstrate that that rbio or rnum, as well as their corresponding weighted means for any defined group of predators, are not directly substitutable. When developing equilibrium size‐based models based on bulk energy flux or comparing PPMR estimates derived from the relationship between body mass and trophic level with those based on diet analysis, weighted mean rbio is a more appropriate measure of PPMR. When calibrating preference PPMR in dynamic size spectrum models then weighted mean rnum will be a more appropriate measure of PPMR.  相似文献   

19.
This study reports the diet composition of 363 wahoo Acanthocybium solandri captured from the Indo‐Pacific. The study also provides the first estimates of consumption and daily ration for the species worldwide, which are important parameters for ecosystem models and may improve ecosystem‐based fisheries management. Thirty‐four prey taxa were identified from A. solandri stomachs with Scombridae having the highest relative importance. Actinopterygii comprised 96% of the total prey wet mass, of which 29% were epipelagic fishes, with 22% alone from Scombridae. There was no significant relationship between fish size and the size of prey items consumed. Feeding intensity, as measured by stomach fullness, did not significantly differ either among seasons or reproductive activity. The mean daily consumption rate was estimated as 344 g day?1, which corresponded to a mean daily ration of 2·44% body mass day?1. The results from this study suggest A. solandri is an opportunistic predator similar to other pelagic piscivores, worldwide.  相似文献   

20.
While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号