共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims The functional advantages of arsenic (As) hyperaccumulation by plants are poorly understood. One proposed benefit, termed elemental allelopathy, occurs when hyperaccumulated As is cycled from the plant back into the top layer of soil, allowing As hyperaccumulators to gain an advantage over intolerant species by increasing soil As concentrations ([ As]) underneath their canopy. To date, there are no studies that detail the presence of increased soil [ As] associated with As hyperaccumulators. In this study, we documented variation in the soil [ As] associated with the Chinese brake fern, Pteris vittata L. and also compared the effects of environmentally relevant soil and solution [ As] on competitor plant growth.Methods Four populations of P. vittata were identified in central Florida, USA. P. vittata tissue samples and soil samples were collected at the base of and at 3 m away from ferns in each population (n = 36). Five sample locations were randomly selected from each site, and soils from the base and 3 m away from each fern were collected to examine the effects of naturally occurring soil [ As] on the germination and growth of a potential competitor plant (Oxalis stricta). Solutions with increasing [ As] were also used to examine the threshold for negative effects of [ As] on O. stricta growth. [ As] were measured using inductively coupled plasma mass spectrometry (ICP-MS).Important findings Overall, soil [ As] from the base of ferns was nearly twice that of soil 3 m away indicating that ferns hyperaccumulate As. However, ferns and their associated soil, contained different [ As] depending on their collection site, indicating that these populations accumulate and use [ As] differently. O. stricta growth decreased and germination was delayed as solution and soil [ As] increased. However, the relative distance from the fern that the soil was collected from did not affect growth, which would be expected with elemental allelopathy. Our results show that P. vittata is associated with higher soil [ As] and these concentrations are sufficient to inhibit growth of competitors. However, the absence of a strong inhibitory relationship associated with proximity to the fern across all locations suggests that the possible functional advantages of elemental allelopathy may depend on site specific characteristics. 相似文献
2.
This field-scale hydroponic experiment investigated the effects of plant density and nutrient levels on arsenic (As) removal by the As-hyperaccumulator Pteris vittata L. (Chinese brake fern). All ferns were grown in plastic tanks containing 30 L of As-contaminated groundwater (130 microg x L(-1) As) collected from South Florida. The treatments consisted of four plant densities (zero, one, two, or four plants per 30 L), two nitrogen (N) concentrations (50% or 100% of 0.25-strength Hoagland solution [HS]), and two phosphorous (P) concentrations (15% and 30% of 0.25 strength HS). While low P was more effective than high P for plant As removal initially, N levels showed little effect. At 15% P, it took 3 wk for the ferns at a plant density of four to reduce As to less than 10 microg L(-1) (USEPA and WHO standard), whereas it took 4-6 wk at plant densities of one or two. For reused ferns, established plants with more extensive roots than "first-time" ferns, a low plant density of one plant/30 L was more effective, reducing As in water to less than 10 microg L(-1) in 8 h. This translates to an As removal rate of 400 microg h(-l) plant(-1), which is the highest rate reported to date. Arsenic-concentration in tanks with no plants as a control remained high throughout the experiment. Using more established ferns supplemented with dilute nutrients (0.25 HS with 25% N and 15% P) with optimized plant density (one plant per 30 L) reduced interplant competition and secondary contamination from nutrients, and can be recommended for phytofiltration of As-contaminated groundwater. This study demonstrated that P. vittata is effective in remediating As-contaminated groundwater to meet recommended standards. 相似文献
3.
A Critical Review of the Arsenic Uptake Mechanisms and Phytoremediation Potential of Pteris vittata 总被引:1,自引:0,他引:1
Luu Thai Danh Paul Truong Raffaella Mammucari Neil Foster 《International journal of phytoremediation》2014,16(5):429-453
The discovery of the arsenic hyperaccumulator, Pteris vittata (Chinese brake fern), has contributed to the promotion of its application as a means of phytoremediation for arsenic removal from contaminated soils and water. Understanding the mechanisms involved in arsenic tolerance and accumulation of this plant provides valuable tools to improve the phytoremediation efficiency. In this review, the current knowledge about the physiological and molecular mechanisms of arsenic tolerance and accumulation in P. vittata is summarized, and an attempt has been made to clarify some of the unresolved questions related to these mechanisms. In addition, the capacity of P. vittata for remediation of arsenic-contaminated soils is evaluated under field conditions for the first time, and possible solutions to improve the remediation capacity of Pteris vittata are also discussed. 相似文献
4.
* Several fern species can hyperaccumulate arsenic, although the mechanisms are not fully understood. Here we investigate the roles of root absorption, translocation and tolerance in As hyperaccumulation by comparing the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. * The two species were grown in a pot experiment with 0-500 mg As kg-1 added as arsenate, and in a short-term (8 h) uptake experiment with 5 microM arsenate under phosphorus-sufficient conditions. * In the pot experiment, P. vittata accumulated up to 2500 mg As kg-1 frond d. wt and suffered no phytotoxicity. P. tremula accumulated<100 mg As kg-1 frond d. wt and suffered severe phytotoxicity with additions of >or=25 mg As kg-1. In the short-term uptake experiment, P. vittata had a 2.2-fold higher rate of arsenate uptake than P. tremula, and distributed more As taken up to the fronds (76%) than did P. tremula (9%). * Our results show that enhanced root uptake, efficient root-to-shoot translocation, and a much elevated tolerance through internal detoxification all contribute to As hyperaccumulation in P. vittata. 相似文献
5.
Enzo Lombi Fang-Jie Zhao Mark Fuhrmann Lena Q. Ma Steve P. McGrath 《The New phytologist》2002,156(2):195-203
6.
改良FIASCO方法筛选砷超富集植物蜈蚣草SSR分子标记 总被引:1,自引:0,他引:1
蜈蚣草(Pteris vittata L.)是目前用于砷污染土壤修复最好的超富集植物,但其分子水平上的研究数据较少。为了开发蜈蚣草特异性SSR遗传标记,本文采用改良的FIASCO方法从蜈蚣草AG和AC微卫星富集文库中随机挑选100个克隆,分离得到51个微卫星位点,其中60%为完美型(Perfect)SSR。根据这些位点设计、合成了25对引物,并对江西庐山及湖北恩施两地蜈蚣草种群各20个个体进行了遗传多样性检测,结果发现:其中8个完美型及1个间断型(intermittent)SSR位点的引物能够扩增出清晰、稳定且具有多态性的条带。9对引物共扩增出41个等位基因,各位点等位基因数在2~7之间,平均等位基因数为4.56个;期望杂合度在0.0494~0.8169之间;没有连锁不平衡现象发生。采用大叶井栏边草(Pteris multifida Poir.)进行跨种扩增,结果发现其中6对引物能够进行种间扩增。这些SSR分子标记的开发有助于蜈蚣草生态适应性进化分析、揭示蜈蚣草地理分布格局以及探讨蜈蚣草遗传多样性,还可用于品种鉴定及选育等。 相似文献
7.
8.
9.
Arsenic hyperaccumulation by different fern species 总被引:25,自引:3,他引:25
10.
11.
超富集植物蜈蚣草中砷化学形态的EXAFS研究 总被引:4,自引:0,他引:4
采用同步辐射扩展X射线吸收精细结构(SREXAFS)技术研究了超富集植物蜈蚣草(PterisvittataL.)中As的化学形态及其在转运过程中的变化。结果表明,蜈蚣草中的As主要以As(Ⅲ)与O配位的形态存在。As(V)被植物吸收后,很快转化为As(Ⅲ),其转化过程主要发生在根部。As(Ⅲ)向地上部转运的过程中价态基本不变。在植物的根部和部分叶柄中存在少量与As-GSH相似的As-S结合方式,但是在As含量最高的羽叶中基本上未发现这种结合方式。与需要提取和分离过程的化学方法相比,采用EXAFS方法研究植物中的砷形态不需经过预分离或化学预处理就可以直接测定植物样品中元素的化学形态,因此可以避免样品预处理过程对As形态的干扰,并获得可靠的砷化学形态方面的信息。 相似文献
12.
Rathinasabapathi B Rangasamy M Froeba J Cherry RH McAuslane HJ Capinera JL Srivastava M Ma LQ 《The New phytologist》2007,175(2):363-369
Brake fern, Pteris vittata, not only tolerates arsenic but also hyperaccumulates it in the frond. The hypothesis that arsenic hyperaccumulation in this fern could function as a defense against insect herbivory was tested. Fronds from control and arsenic-treated ferns were presented to nymphs of the grasshopper Schistocerca americana. Feeding damage was recorded by visual observation and quantification of the fresh weight of frond left uneaten and number of fecal pellets produced over a 2-d period. Grasshopper weight was determined before and after 5 d of feeding. Grasshoppers consumed significantly greater amounts of the frond tissue, produced more fecal pellets and had increased body weight on control plants compared with grasshoppers fed arsenic-treated ferns. Very little or none of the arsenic-treated ferns were consumed indicating feeding deterrence. In a feeding deterrent experiment with lettuce, sodium arsenite at 1.0 mm deterred grasshoppers from feeding whereas 0.1 mm did not. In a choice experiment, grasshoppers preferred to feed on lettuce dipped in water compared with lettuce dipped in 1.0 mm sodium arsenite. Our results show that arsenic hyperaccumulation in brake fern is an elemental defense against grasshopper herbivory. 相似文献
13.
Distributions of arsenic and essential elements in pinna of arsenic hyperaccumulator Pteris vittata L. 总被引:1,自引:0,他引:1
The distributions of arsenic and 6 essential elements in the pinna of As hyperaccumulator, Pteris vittata L., were studied using synchrotron radiation X-ray fluorescence (SRXRF). Significant correlation between the distribution and mobility of the elements revealed that SRXRF study on the elemental distribution was feasible to inspect the transportations of elements in plants. The distribution of As in the pinna showed that As had great abilities to be transported in xylem vessels and from xylem to mesophyll. The distribution of K, one of the most mobile elements in plants, was similar to that of As, whereas the distributions of Fe and Ca with less mobility in plants were almost opposite to that of As in the pinna. 相似文献
14.
Environmental scanning electron microscope (ESEM) fitted with an energy dispersive X-ray microanalyzer (EDX) was used to investigate
the surface micromorphology and arsenic (As) micro-distribution in Chinese brake (Pteris vittata L.). It was found that amounts of trichome, which possessed multicellular structure with the average length of 160 μm and
with an average diameter of 28 μm, existed in the frond ofP. vittata, and the density of trichome on the pinnate axial surface was higher than that on the petiole. Visible X-ray peak of As was
recorded in the epidermal cell and trichome. The relative weight of As in the pinnate trichome, which contained the highest
concentration of As among all tissues of the plant, was 2.4 and 3.9 times as much as that in the epidermal and mesophyllous
cells, respectively. The As concentrations in the basal and stalk cells of the same trichome were higher than that in its
cap cell. This is the first time to report that the trichome ofP. vittata plays an important role in arsenic hyperaccumulation. The finding from the present study implies that much attention should
be paid to the role of the trichome in understanding the hyperaccumulation and detoxicity of As in the hyperaccumulator and
improving the ability of As accumulation. 相似文献
15.
CHEN Tongbin HUANG Zechun HUANG Yuying & LEI Mei Laboratory of Environmental Remediation Institute of Geographic Sciences Natural Resources Research Chinese Academy of Sciences Beijing China Laboratory of Synchrotron Radiation Institute of High Energy Physics Chinese Academy of Sciences Beijing China 《中国科学:生命科学英文版》2005,48(1):18-24
The distributions of arsenic and 6 essential elements in the pinna of As hyperac-cumulator, Pteris vittata L., were studied using synchrotron radiation X-ray fluorescence (SRXRF). Significant correlation between the distribution and mobility of the elements revealed that SRXRF study on the elemental distribution was feasible to inspect the transportations of elements in plants. The distribution of As in the pinna showed that As had great abilities to be transported in xylem vessels and from xylem to mesophyll. The distribution of K, one of the most mobile elements in plants, was similar to that of As, whereas the distributions of Fe and Ca with less mobility in plants were almost opposite to that of As in the pinna. 相似文献
16.
以野生苗移栽的蜈蚣草为试材 ,通过盆栽试验研究了收获次数对蜈蚣草生长、砷吸收和植物修复效率的影响。结果表明 :在 3次收获中 ,随着收获次数的增加 ,不同砷浓度处理之间蜈蚣草生物量的差异逐步缩小 ;不加砷的对照处理中 ,每次收获后的砷吸收速率下降趋势 ,而在 3个加砷处理中 ,第 2次收获和第 3次收获的蜈蚣草的吸砷速率为 6 3~ 75 μg/ (plant· d)、4 4~ 5 5μg/ (plant· d) ,均显著高于第 1次收获时的吸收速率。表明多次收获并没有降低砷的积累速度。由此可见 ,通过适当增加蜈蚣草的收获次数是提高砷修复效率的一种策略 相似文献
17.
LI Wenxue CHEN Tongbin CHEN Yang & LEI Mei Center for Environmental Remediation Institute of Geographic Sciences Natural Resources Research Chinese Academy of Sci-ences Beijing China 《中国科学:生命科学英文版》2005,(2)
Heavy metal pollution of soils, caused by various anthropogenic sources, is a major environmental problem. Due to its cost-effectiveness and environ-mental friendliness, phytoremediation of arsenic-con- taminated soils has attracted more and more attention. An arsenic (As) hyperaccumulator, Chinese brake (Pteris vittata L.) was discovered by Chen et al. in China[1]. The field phytoremediation in Chenzhou City, Hunan Province has been successfully carried out by Chen et al. since 2000[2,3].… 相似文献
18.
Kertulis-Tartar GM Ma LQ Tu C Chirenje T 《International journal of phytoremediation》2006,8(4):311-322
A field study was conducted to determine the efficiency of Chinese brake fern (Pteris vittata L.), an arsenic hyperaccumulator, on removal of arsenic from soil at an arsenic-contaminated site. Chinese brake ferns were planted on a site previously used to treat wood with chromated copper arsenate (CCA). Arsenic concentrations in surface and profile soil samples were determined for 2000, 2001, and 2002. In both 2001 and 2002, senesced and senescing fronds only, as well as all fronds, were harvested. Frond arsenic concentrations were not significantly different between the three harvests. Compared to senesced fronds, live fronds resulted in the greatest amount of arsenic removal. There were no significant differences in soil arsenic concentrations between 2000, 2001, and 2002, primarily due to the extreme variability in soil arsenic concentrations. However, the mean surface soil arsenic was reduced from 190 to 140 mg kg(-1). Approximately 19.3 g of arsenic were removed from the soil by Chinese brake fern. Therefore, this fern is capable of accumulating arsenic from the CCA -contaminated site and may be competitive, in terms of cost, to conventional remediation systems. However, better agronomic practices are needed to enhance plant growth and arsenic uptake to obtain maximum soil arsenic removal and to minimize remediation time. 相似文献
19.
超富集植物蜈蚣草中砷化学形态的EXAFS研究 总被引:6,自引:0,他引:6
采用同步辐射扩展X射线吸收精细结构(SR EXAFS)技术研究了超富集植物蜈蚣草(Pteris vittata L.)中As的化学形态及其在转运过程中的变化.结果表明,蜈蚣草中的As主要以As(Ⅲ)与O配位的形态存在.As(Ⅴ)被植物吸收后,很快转化为As(Ⅲ),其转化过程主要发生在根部.As(Ⅲ)向地上部转运的过程中价态基本不变.在植物的根部和部分叶柄中存在少量与As-GSH相似的As-S结合方式,但是在As含量最高的羽叶中基本上未发现这种结合方式.与需要提取和分离过程的化学方法相比,采用EXAFS方法研究植物中的砷形态不需经过预分离或化学预处理就可以直接测定植物样品中元素的化学形态,因此可以避免样品预处理过程对As形态的干扰,并获得可靠的砷化学形态方面的信息. 相似文献
20.
Greenhouse experiments were conducted to study the effects of chelating agents on the growth and metal accumulation of Chinese brake fern (Pteris vittata L.), vetiver (Vetiveria zizanioides L.), and rostrate sesbania (Sesbania rostrata L.) in soil contaminated with arsenic (As), Cu, Pb, and Zn. Among the five chelating agents used [ethylenediaminetriacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), oxalic acid (OA), and phytic acid (PA)], OA was the best to mobilize As, EDTA to mobilize Cu and Pb, and HEDTA to mobilize Zn from soil, respectively. The biomass of vetiver was the highest, followed by rostrate sesbania. All chelating agents inhibited the growth of Chinese brake fern and rostrate sesbania, but HEDTA significantly increased the aboveground biomass of vetiver. Dry weights of both Chinese brake fern and rostrate sesbania decreased with increasing EDTA concentrations amended in the soil, especially in treatments with high EDTA concentrations. EDTA and HEDTA enhanced Cu, Zn, and Pb, but lowered As accumulation in all three plant species, except for As in vetiver, while OA significantly enhanced As accumulation in the aboveground part of vetiver. Concentrations of Cu, Zn, and Pb in the aboveground parts of plants increased significantly with the increase of EDTA concentrations and treatment time. In addition to As, Chinese brake fern also accumulated the highest Cu, Pb, and Zn in its aboveground parts among the three plant species grown in metal-contaminated soil with EDTA/HEDTA treatments. This species, therefore, can be used to simultaneously clean up As, Cu, Pb, and Zn from contaminated soils with the aid of EDTA or HEDTA. 相似文献