首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pippi (phosphatidyl inositol phosphate indicator) is a biosensor based on the principle of FRET (F?rster resonance energy transfer), which consists of a pair of fluorescent proteins, CFP (cyan fluorescent protein) and YFP (yellow fluorescent protein), the PH domain sandwiched between them, and K-Ras C-terminal sequence for plasma membrane localization. Due to marked cross-excitation of YFP with the conditions used to excite CFP, initial FRET images obtained by TPE (two-photon excitation) microscopy suffered from low signal-to-noise ratio, hampering the observation of lipids in three-dimensional structures. To solve this problem, YFP and CFP in the original Pippi-PI(3,4)P(2) was replaced by sREACh (super resonance energy accepting chromoprotein) and mTFP1 (monomeric teal fluorescent protein), respectively. The biosensor was also fused with an internal control protein, mKeima, where Keima/mTFP1 indicates the FRET efficiency, and indeed epidermal growth factor stimulation increased Keima/mTFP1 in HeLa cells. This biosensor successfully showed PI(3,4)P(2) accumulation to the lateral membrane in the MDCK cyst cultured in a three-dimensional environment. Furthermore, other FRET-based biosensors for PIP(3) distribution and for tyrosine kinase activity were developed based on this method, suggesting its broad application for visualizing signal transduction events with TPE microscopy.  相似文献   

2.
Pippi (phosphatidyl inositol phosphate indicator) is a biosensor based on the principle of FRET (Förster resonance energy transfer), which consists of a pair of fluorescent proteins, CFP (cyan fluorescent protein) and YFP (yellow fluorescent protein), the PH domain sandwiched between them, and K-Ras C-terminal sequence for plasma membrane localization. Due to marked cross-excitation of YFP with the conditions used to excite CFP, initial FRET images obtained by TPE (two-photon excitation) microscopy suffered from low signal-to-noise ratio, hampering the observation of lipids in three-dimensional structures. To solve this problem, YFP and CFP in the original Pippi-PI(3,4)P2 was replaced by sREACh (super resonance energy accepting chromoprotein) and mTFP1 (monomeric teal fluorescent protein), respectively. The biosensor was also fused with an internal control protein, mKeima, where Keima/mTFP1 indicates the FRET efficiency, and indeed epidermal growth factor stimulation increased Keima/mTFP1 in HeLa cells. This biosensor successfully showed PI(3,4)P2 accumulation to the lateral membrane in the MDCK cyst cultured in a three-dimensional environment. Furthermore, other FRET-based biosensors for PIP3 distribution and for tyrosine kinase activity were developed based on this method, suggesting its broad application for visualizing signal transduction events with TPE microscopy.  相似文献   

3.
Research in mammals has demonstrated a variety of regulatory effects of vasopressin and oxytocin on endocrine functions of the anterior pituitary gland. Less evidence is available regarding the hypophysiotropic action of arginine vasotocin (AVT) comprising vasopressic and oxytocic activities in birds. Some hypophysiotropic effects of AVT may result from its interactions with brain circuits controlling pituitary functions, whereas others are caused by its direct affect on pituitary cells. Use of an antiserum to the vasotocin receptor VT2 (VT2R) has revealed numerous immunoreactive cells in the anterior pituitary gland of the chicken. The objective of the present study has been to identify endocrine phenotypes of chicken pituitary cells containing VT2R by means of immunohistochemical labeling. VT2R immunoreactivity has been found in all cells immunoreactive for adrenocorticotropin and alpha-melanotropin. Approximately 10% of labeled lactotropes are also immunoreactive for VT2R and lie around the anatomical boundary dividing the cephalic and caudal lobes. In both corticotropes/melanotropes and lactotropes, immunoreactive VT2R is present in a narrow layer outlining cell bodies. Immunoreactive VT2R is not found in gonadotropes, thyrotropes, or somatotropes. These results provide evidence for the important role of VT2Rs in mediating effects of AVT on endocrine secretion from corticotropes and, partially, from lactotropes.  相似文献   

4.
5.
When and where proteins associate is a central question in many biomolecular studies. F?rster resonance energy transfer (FRET) measurements can be used to address this question when the interacting proteins are labeled with appropriate donor and acceptor fluorophores. We describe an improved method to determine FRET efficiency that uses a mode-locked laser, a confocal microscope and a streak camera. We applied this method to study the association of alpha and beta(1) subunits of the human cardiac sodium channel. The subunits were tagged with the cyan and yellow variants of the green fluorescent protein (GFP) and expressed in human embryonic kidney (HEK293) cells. Pronounced FRET between the channel subunits in the endoplasmic reticulum (ER) suggested that the subunits associate before they reach the plasma membrane. The described method allows simultaneous measurement of donor and acceptor fluorescence decays and provides an intrinsically validated estimate of FRET efficiency.  相似文献   

6.
Abe H  Watanabe Y  Inoue-Murayama M 《Gene》2012,494(2):174-180
Arginine vasotocin (AVT) is a neurohypophysial hormone that plays an essential role in various social behaviours. We investigated the degree of polymorphisms in the C-terminal domain of the AVT V2-type receptor (AVT2R) among avian species to determine the mechanism by which genetic polymorphisms in the neuropeptide receptor may contribute to different levels of signal transduction. In passerine birds, AVT2R was characterised by 2 variable regions, both of which were managed by insertion/deletion (indel); however, indels were rarely found in other avian taxa. The presence or absence of deletions in passerines largely affected the properties of the predicted palmitoylation sites at the proximal part of the C-terminal tail. Moreover, we detected intraspecific polymorphisms in estrildid finches based on the number of tri-amino acid (GHQ/EHQ/EHR) repeats in another variable region. Our results indicate that amino acid substitutions and length variation at the C-terminus may impact subsequent signal transduction and affect behavioural traits in wild birds.  相似文献   

7.
As described previously, receptor dimerization of G protein-coupled receptors may influence signaling, trafficking, and regulation in vivo. Up to now, most studies aiming at the possible role of receptor dimerization in receptor activation and signal transduction are focused on class A GPCRs. In the present work, the dimerization behavior of the corticotropin-releasing factor receptor type 1 (CRF1R), which belongs to class B of GPCRs and plays an important role in coordination of the immune response, stress, and learning behavior, was investigated by using fluorescence resonance energy transfer (FRET). For this purpose, we generated fusion proteins of CRF1R tagged at their C-terminus to a cyan or yellow fluorescent protein, which can be used as a FRET pair. Binding studies verified that the receptor constructs were able to bind their natural ligands in a manner comparable with the wild-type receptor, whereas cAMP accumulation proved the functionality of the constructs. In microscopic studies, a dimerization of the CRF1R was observed, but the addition of either CRF-related agonists or antagonists did not show any dose-related increase of the observed FRET signal, indicating that the dimer-monomer ratio is not changed on addition of ligand.  相似文献   

8.
Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca(2+) FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ~11-fold change in dynamic range in response to Ca(2+) binding. The enhanced dynamic range for Ca(2+) concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection.  相似文献   

9.
10.
As described previously, receptor dimerization of G protein-coupled receptors may influence signaling, trafficking, and regulation in vivo. Up to now, most studies aiming at the possible role of receptor dimerization in receptor activation and signal transduction are focused on class A GPCRs. In the present work, the dimerization behavior of the corticotropin-releasing factor receptor type 1 (CRF1R), which belongs to class B of GPCRs and plays an important role in coordination of the immune response, stress, and learning behavior, was investigated by using fluorescence resonance energy transfer (FRET). For this purpose, we generated fusion proteins of CRF1R tagged at their C-terminus to a cyan or yellow fluorescent protein, which can be used as a FRET pair. Binding studies verified that the receptor constructs were able to bind their natural ligands in a manner comparable with the wild-type receptor, whereas cAMP accumulation proved the functionality of the constructs. In microscopic studies, a dimerization of the CRF1R was observed, but the addition of either CRF-related agonists or antagonists did not show any dose-related increase of the observed FRET signal, indicating that the dimer-monomer ratio is not changed on addition of ligand.  相似文献   

11.
Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca2+ FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ∼11-fold change in dynamic range in response to Ca2+ binding. The enhanced dynamic range for Ca2+ concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection.  相似文献   

12.
Syntaxin1A, a neural-specific N-ethylmaleimide-sensitive factor attachment protein receptor protein essential to neurotransmitter release, in isolation forms a closed conformation with an N-terminal alpha-helix bundle folded upon the SNARE motif (H3 domain), thereby limiting interaction of the H3 domain with cognate SNAREs. Munc18-1, a neural-specific member of the Sec1/Munc18 protein family, binds to syntaxin1A, stabilizing this closed conformation. We used fluorescence resonance energy transfer (FRET) to characterize the Munc18-1/syntaxin1A interaction in intact cells. Enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A, or mutants of these proteins, were expressed as donor and acceptor pairs in human embryonic kidney HEK293-S3 and adrenal chromaffin cells. Apparent FRET efficiency was measured using two independent approaches with complementary results that unambiguously verified FRET and provided a spatial map of FRET efficiency. In addition, enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A colocalized with a Golgi marker and exhibited FRET at early expression times, whereas a strong plasma membrane colocalization, with similar FRET values, was apparent at later times. Trafficking of syntaxin1A to the plasma membrane was dependent on the presence of Munc18-1. Both syntaxin1A(L165A/E166A), a constitutively open conformation mutant, and syntaxin1A(I233A), an H3 domain point mutant, demonstrated apparent FRET efficiency that was reduced approximately 70% from control. In contrast, the H3 domain mutant syntaxin1A(I209A) had no effect. By using phosphomimetic mutants of Munc18-1, we also established that Ser-313, a Munc18-1 protein kinase C phosphorylation site, and Thr-574, a cyclin-dependent kinase 5 phosphorylation site, regulate Munc18-1/syntaxin1A interaction in HEK293-S3 and chromaffin cells. We conclude that FRET imaging in living cells may allow correlated regulation of Munc18-1/syntaxin1A interactions to Ca(2+)-regulated secretory events.  相似文献   

13.
Transport of urocortin, a potent satiety peptide, occurs at the blood-brain barrier of the mouse. Endocytosis of urocortin by the cerebral microvessel endothelial cells composing the blood-brain barrier is a rate-limiting step of this transport, but the cellular mechanisms involved have not been fully elucidated. The presence of both CRH receptors R1 and R2 in isolated cerebral microvessels shown in this study suggested that both subtypes might mediate urocortin transport. The roles of these two receptors in the endocytosis and signal transduction of urocortin were tested by overexpression studies in human embryonic kidney 293 cells. Both receptors led to a significant increase of binding and endocytosis of radiolabeled urocortin. CRHR1-mediated urocortin endocytosis was blocked by astressin (antagonist for both CRHRs), whereas CRHR2-mediated urocortin endocytosis was also blocked by antisauvagine 30 (selective CRHR2beta antagonist). Chlorpromazine, filipin, and nystatin had no effect on urocortin endocytosis, indicating the lack of significant involvement of clathrin or caveolae membrane microdomains. Both CRHR1 and CRHR2 were able to mediate the ligand-induced increase of cAMP production, suggesting that the overexpressed receptors were biologically active. Elevation of intracellular cAMP by forskolin or dibutyryl-cAMP, however, did not show acute modulation of the binding and endocytosis of urocortin. Despite the substantial intracellular degradation of endocytosed urocortin in cells overexpressing either CRHR1 or CRHR2, intact urocortin could be exocytosed during the 1-h study interval. We conclude that both CRHR1 and CRHR2 play a facilitatory role in the non-clathrin-, non-caveolae-mediated endocytosis and intracellular signal transduction of this potent peptide.  相似文献   

14.
The transducer consists of a semiconductor device based on two stacked -i-n heterostructures that were designed to detect the emissions of the fluorescence resonance energy transfer between fluorophores in the cyan (470 nm) and yellow (588 nm) range of the spectrum. This research represents a preliminary study on the use of such wavelength-sensitive devices as photodetectors for this kind of application. The device was characterized through optoelectronic measurements concerning spectral response measurements under different electrical and optical biasing conditions. To simulate the fluorescence resonance energy transfer (FRET) pairs, a chromatic time-dependent combination of cyan and yellow wavelengths was applied to the device. The generated photocurrent was measured under reverse and forward bias to read out the output photocurrent signal. A different wavelength-biasing light was also superimposed. Results show that under reverse bias, the photocurrent signal presents four separate levels, each one assigned to the different wavelength combinations of the FRET pairs. If a blue background is superimposed, the yellow channel is enhanced and the cyan suppressed, while under red irradiation, the opposite behavior occurs. So, under suitable biasing light, the transducer is able to detect separately the cyan and yellow fluorescence pairs. An electrical model, supported by a numerical simulation, supports the transduction mechanism of the device.  相似文献   

15.
Spectral variants of the green fluorescent protein (GFP) have been extensively used as reporters to image molecular interactions in living cells by fluorescence resonance energy transfer (FRET). However, those GFP variants which are the most efficient donor acceptor pairs for FRET measurements show a high degree of spectral overlap which has hampered in the past their use in FRET applications. Here we use spectral imaging and subsequent un-mixing to quantitatively separate highly overlapping donor and acceptor emissions in FRET measurements. We demonstrate the method in fixed and living cells using a novel GFP based FRET pair (GFP2-YFP (yellow)), which has an increased FRET efficiency compared to the most commonly used FRET pair consisting of cyan fluorescent protein and YFP. Moreover, GFP2 has its excitation maximum at 396 nm at which the YFP acceptor is excited only below the detection level and thus this FRET pair is ideal for applications involving sensitized emission.  相似文献   

16.
Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling molecules such as cyclic AMP (cAMP) and Ca2+. Genetically encoded sensors for cGMP have been developed based on fluorescence resonance energy transfer (FRET) between fluorescent proteins. However, to analyze the dynamic relationship among these second messengers, combined use of existing sensors in a single cell is inadequate because of the significant spectral overlaps. A single wavelength indicator is an effective alternative to avoid this problem, but color variants of a single fluorescent protein-based biosensor are limited. In this study, to construct a new color fluorescent sensor, we converted the FRET-based sensor into a single wavelength indicator using a dark FRET acceptor. We developed a blue fluorescent cGMP biosensor, which is spectrally compatible with a FRET-based cAMP sensor using cyan and yellow fluorescent proteins (CFP/YFP). We cotransfected them and loaded a red fluorescent probe for Ca2+ into cells, and accomplished triple-parameter fluorescence imaging of these cyclic nucleotides and Ca2+, confirming the applicability of this combination to individually monitor their dynamics in a single cell. This blue fluorescent sensor and the approach using this FRET pair would be useful for multiparameter fluorescence imaging to understand complex signal transduction networks.  相似文献   

17.
Oligomerization or dimerization of G-protein-coupled receptors (GPCRs) has emerged as an important theme in signal transduction. This concept has recently gained widespread interest due to the application of direct and noninvasive biophysical techniques such as fluorescence resonance energy transfer (FRET), which have shown unequivocally that several types of GPCR can form dimers or oligomers in living cells. Current challenges are to determine which GPCRs can self-associate and/or interact with other GPCRs, to define the molecular principles that govern these specific interactions, and to establish which aspects of GPCR function require oligomerization. Although these questions ultimately must be addressed by using GPCRs expressed endogenously in their native cell types, analysis of GPCR oligomerization in heterologous expression systems will be useful to survey which GPCRs can interact, to conduct structure-function studies, and to identify peptides or small molecules that disrupt GPCR oligomerization and function. Here, we describe methods employing scanning fluorometry to detect FRET between GPCRs tagged with enhanced cyan and yellow fluorescent proteins (CFP and YFP) in living yeast cells. This approach provides a powerful means to analyze oligomerization of a variety of GPCRs that can be expressed in yeast, such as adrenergic, adenosine, C5a, muscarinic acetylcholine, vasopressin, opioid, and somatostatin receptors.  相似文献   

18.
Endometriosis is considered as a benign aseptic inflammatory disease, characterised by the presence of ectopic endometrium-like tissue. Its symptoms (mostly pain and infertility) are reported as constant stressors. Corticotropin releasing hormone (CRH) and urocortin (UCN) are neuropeptides, strongly related to stress and inflammation. The effects of CRH and UCN are mediated through CRHR1 and CRHR2 receptors which are implicated in several reproductive functions acting as inflammatory components. However, the involvement of these molecules to endometriosis remains unknown. The aim of this study was to examine the expression of CRHR1 and CRHR2 in endometriotic sites and to compare the expression of CRHR1 and CRHR2 in eutopic endometrium of endometriotic women to that of healthy women. We further compared the expression of CRH, UCN, CRHR1 and CRHR2 in ectopic endometrium to that in eutopic endometrium of women with endometriosis. Endometrial biopsy specimens were taken from healthy women (10 patients) and endometrial and endometriotic biopsy specimens were taken from women with endometriosis (16 patients). Τhe expression of CRH, UCN, CRHR1, and CRHR2 was tested via RT-PCR, immunohistochemistry and Western blotting. This study shows for the first time that CRH and UCN receptor subtypes CRHR1β and CRHR2α are expressed in endometriotic sites and that they are more strongly expressed (p<0.01) in eutopic endometrium of women with endometriosis compared to healthy women endometrium at the mRNA and protein level. CRH, UCN, CRHR1 and CRHR2 mRNA were also more highly expressed in ectopic rather than eutopic endometrium (CRH, UCN, CRHR2α: p<0.01, CRHR1β: p<0.05) and protein (CRH and UCN: p<0.05, CRHR1 and CRHR2: p<0.01) in women with endometriosis. These data indicate that CRH and UCN might play an immunoregulatory role in endometriotic sites by affecting reproductive functions such as decidualization and implantation of women with endometriosis.  相似文献   

19.
Evidence for ligand-independent multimerization of the IL-17 receptor   总被引:5,自引:0,他引:5  
IL-17 and its receptor are founding members of a novel inflammatory cytokine family. To date, only one IL-17 receptor subunit has been identified, termed IL-17RA. All known cytokine receptors consist of a complex of multiple subunits. Although IL-17-family cytokines exist as homodimers, the configuration and stoichiometry of the IL-17R complex remain unknown. We used fluorescence resonance energy transfer (FRET) to determine whether IL-17RA subunits multimerize, and, if so, whether they are preassembled in the plasma membrane. HEK293 cells coexpressing IL-17RA fused to cyan or yellow fluorescent proteins (CFP or YFP) were used to evaluate FRET before and after IL-17A or IL-17F treatment. In the absence of ligand, IL-17RA molecules exhibited significant specific FRET efficiency, demonstrating that they exist in a multimeric, preformed receptor complex. Strikingly, treatment with IL-17A or IL-17F markedly reduced FRET efficiency, suggesting that IL-17RA subunits within the IL-17R complex undergo a conformational change upon ligand binding.  相似文献   

20.
SCAT3 is a fluorescence resonance energy transfer (FRET)-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3-sensitive linker, and an enhanced yellow fluorescent protein with efficient maturation property (Venus). Despite its considerable promise, however, greater responsivity of fluorescence to the proteolysis has been desired for better understanding of spatio-temporal pattern of the activation of caspase-3 during apoptosis. In the present study, the length of linker regions of SCAT3 has been thoroughly optimized by use of a PCR technique. The bacterial colonies expressing the constructs were screened for high FRET efficiency using our home-made fluorescence image analyzer. The FRET signal of an improved SCAT3 changed by about tenfold during apoptotic events in mammalian cells, enabling visualization of caspase-3 activation with better spatial resolution than before. This new high-throughput method will be applicable to development and improvement of FRET-based indicators for proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号