首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以丰香和红丰草莓为试材,对果实发育成熟过程中细胞壁水解酶活性和细胞壁成份变化进行了研究.结果表明:半乳糖苷酶和α-甘露糖苷酶活性随草莓果实成熟而提高,葡萄糖苷酶活性不随草莓果实成熟而提高.随着果实发育成熟,纤维素酶活性、果胶酶活性不断提高.果实中未检测到内切多聚半乳糖醛酸酶活性,外切多聚半乳糖醛酸酶活性变化不随果实成熟软化而提高.随果实发育成熟,细胞壁中可溶性果胶和半纤维素增加,而离子结合果胶和共价结合果胶及纤维素减少.  相似文献   

2.
3.
The D-mannose/L-galactose pathway for the biosynthesis of vitamin C (L-ascorbic acid; AsA) has greatly improved the understanding of this indispensable compound in plants, where it plays multifunctional roles. However, it is yet to be proven whether the same pathway holds for all the different organs of plants, especially the fruit-bearing plants, at different stages of development. Micro-Tom was used here to elucidate the mechanisms of AsA accumulation and regulation in tomato fruits. The mRNA expression of the genes in the D-mannose/L-galactose pathway were inversely correlated with increasing AsA content of Micro-Tom fruits during ripening. Feeding L-[6-(14)C]AsA to Micro-Tom plants revealed that the bulk of the label from AsA accumulated in the source leaf was transported to the immature green fruits, and the rate of translocation decreased as ripening progressed. L-Galactose feeding, but neither D-galacturonate nor L-gulono-1,4-lactone, enhanced the content of AsA in immature green fruit. On the other hand, L-galactose and D-galacturonate, but not L-gulono-1,4-lactone, resulted in an increase in the AsA content of red ripened fruits. Crude extract prepared from insoluble fractions of green and red fruits showed D-galacturonate reductase- and aldonolactonase-specific activities, the antepenultimate and penultimate enzymes, respectively, in the D-galacturonate pathway, in both fruits. Taken together, the present findings demonstrated that tomato fruits could switch between different sources for AsA supply depending on their ripening stages. The translocation from source leaves and biosynthesis via the D-mannose/L-galactose pathway are dominant sources in immature fruits, while the alternative D-galacturonate pathway contributes to AsA accumulation in ripened Micro-Tom fruits.  相似文献   

4.
The presence of enzymes of the ascorbate–glutathione cycle was studied in mitochondria purified from green and red pepper (Capsicum annuum L.) fruits. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) were present in the isolated mitochondria of both fruit ripening stages. The activity of the reductive ascorbate–glutathione cycle enzymes (MDHAR, GR and DHAR) was higher in mitochondria isolated from green than from red fruits, while APX and the antioxidative enzyme superoxide dismutase (SOD; EC 1.15.1.1) were higher in the red fruits. The levels of ascorbate and L-galactono-γ-lactone dehydrogenase (GLDH; EC 1.3.2.3) activity were found to be similar in the mitochondria of both fruits. The higher APX and Mn-SOD specific activities in mitochondria from red fruits might play a role in avoiding the accumulation of any activated oxygen species generated in these mitochondria, and suggests an active role for these enzymes during ripening.  相似文献   

5.
Climacteric rise, ethylene production, peroxidase activity and its isozyme and their interrelationships during the ripening of tomato fruits have been studied. It was found' that there was parallelism between ethylene production and climacteric rise. The climacteric rise of tomato fruits was hastened by ethylene applied at the mature green stage. The ethylene production was inhibited by low oxygen and high carbon dioxide partial pressure. The peroxidase activity in the tomato fruits appeared to be different at three stages, higher in the half red fruits and lower in both green mature and fully red fruits. This activity was increased by ethylene and decreased by lower partial pres- sure of oxygen. The peroxidase isozymes sppeared also different at different stages of ripening. There were 4 bands in young fruits, 3 in green mature fruits, 5 in half red fruits and 3 in fully red fruits. After the application of ethylene to the tomato fruits, there appear one new band of peroxidase isozyme.  相似文献   

6.
The decrease of strawberry (Fragariaxananassa Duch.) fruit firmness observed during ripening is partly attributed to pectolytic enzymes: polygalacturonases, pectate lyases and pectin methylesterases (PMEs). In this study, PME activity and pectin content and esterification degree were measured in cell walls from ripening fruits. Small green, large green, white, turning, red and over-ripe fruits from the Elsanta cultivar were analyzed. Using the 2F4 antibody directed against the calcium-induced egg box conformation of pectin, we show that calcium-bound acidic pectin was nearly absent from green and white fruits, but increased abruptly at the turning stage, while the total pectin content decreased only slightly as maturation proceeded. Isoelectrofocalisation performed on wall protein extracts revealed the expression of at least six different basic PME isoforms. Maximum PME activity was detected in green fruits and steadily decreased to reach a minimum in senescent fruits. The preliminary role of PMEs and subsequent pectin degradation by pectolytic enzymes is discussed.  相似文献   

7.
Glycosidases in Cell Wall-degrading Extracts of Ripening Tomato Fruits   总被引:18,自引:12,他引:6       下载免费PDF全文
Enzyme preparations were obtained from cell wall debris of tomato (Lycopersicon esculentum L. cv. Tropic) fruits at various stages of ripeness and were assayed for glycosidase and polysaccharidase activities. In addition to polygalacturonase (mol wt 40,000), ripening fruits contain β-galactosidase (mol wt 63,000) and β-1, 3-glucanase (mol wt 12,000). The β-glycosidases, unlike polygalacturonase, are active in extracts of green fruits. Placental tissue shows very low polygalacturonase but increasing β-galactosidase and β-1, 3-glucanase activities as ripening proceeds. A large change in the susceptibility of the walls to hydrolase action occurs before the stage in which the greatest polygalacturonase activity occurs. The possibility that the β-glycosidases contribute to the wall modifications that lead to fruit softening is discussed.  相似文献   

8.
When mature green tomato fruits are stored at 22?C for 30 days,they ripen normally and soften, but if they are kept at 33?Cfor 15 days (heat treatment), then stored at 22?C they do notsoften. The effect of heat treatment on the development of polygalacturonase(PG, EC 3.2.1.15 [EC] ) activities in tomato fruits during storagetherefore was studied. When mature green tomato fruits werestored at 22?C, PG activity, which had not been detectable inthe fruits, appeared as the color changed and increased dramaticallythereafter. PG activity, however, did not appear during heattreatment. When heat-treated fruits were transferred to 22?C,PG activity appeared after a 6-day lag period and increasedduring the next 30 days at 22?C to about 15% of the value detectedin ripe tomato fruits. The PG in ripe tomato fruits was composed of two isoenzymesthat had different mol wts. A high molecular form (PG-1, molwt 100K) appeared during the early stage of ripening and a lowmolecular form (PG-2, mol wt 44K) a little later. PG-2 increasedvigorously during ripening and eventually accounted for mostof the enzyme activity in the ripe fruits. Only a single isoenzyme(Y-PG, mol wt 100K), however, was detected in heat-treated tomatofruits stored at 22?C for 30 days. PG-1 and Y-PG gave the samemol wt on Sephacryl S-200 gel nitration, but could be separatedby Toyopearl HW-55 F gel filtration. (Received October 31, 1983; Accepted February 20, 1984)  相似文献   

9.
Polygalacturonase (PG) and pectin methylesterase (PME) activities were analyzed in ripening fruits of two tabasco pepper (Capsicum frutescens) lines that differ in the extent of pectin degradation (depolymerization and dissolution). Ripe 'Easy Pick' fruit is characterized by pectin ultra-degradation and easy fruit detachment from the calyx (deciduous trait), while pectin depolymerization and dissolution in ripe 'Hard Pick' fruit is limited. PG activity in protein extracts increased similarly in both lines during fruit ripening. PME activity in vivo assessed by methanol production, however, was detected only in fruit of the 'Easy Pick' line and was associated with decreased pectin methyl-esterification. In contrast, methanol production in vivo was not detected in fruits of the 'Hard Pick' line and the degree of pectin esterification remained the same throughout ripening. Consequently, a ripening specific PME that is active in vivo appears to enhance PG-mediated pectin ultra-degradation resulting in cell wall dissolution and the deciduous fruit trait. PME activity in vitro, however, was detected in protein extracts from both lines at all ripening stages. This indicates that some PME isozymes are apparently inactive in vivo, particularly in green fruit and throughout ripening in the 'Hard Pick' line, limiting PG-mediated pectin depolymerization which results in moderately difficult fruit separation from the calyx.  相似文献   

10.
The fruit extracts of ripening cv. Japanese Persimmon, "Saijyo", contained a number of glycosidases and glycanases. Among them, beta-galactosidase appeared to be the most significant, and the activity increased in parallel with tissue ripening. Persimmon beta-galactosidase was presented in at least three isoforms, beta-galactosidase-I (pI = 4.88), beta-galactosidase-II (pI = 6.76), and beta-galactosidase-III (pI = 7.05). beta-Galactosidase-III had exo-type galactanase activity, while the others did not. The activity of endo-type glycanases was a maximum in immature green or yellow fruits. The firmness of the pulp tissue decreased dramatically, and the amount of water-soluble polysaccharide (WSS) increased. The enzyme activities of exo-type glycosidases, especially beta-galactosidase, appeared maximal in mature red fruits. The amount of extractable pectin remained unchanged, although the galactose content of the high-molecular-weight fraction in WSS decreased dramatically. These results suggest that the ripening of persimmon was caused by the solubilization of pectic polysaccharide by endo-type glycanases and digestion by exo-type glycosidases. beta-Galactosidase, in particular, seemed to play a major role in ripening the fruit.  相似文献   

11.
Changes in chemical composition and hydrolytic enzyme activities in guava fruits cv. Lucknow-49 have been reported at four different stages of maturity, viz., mature green (MG), color turning (CT), ripe (R) and over ripe (OR). Chlorophyll content decreased, while carotenoid content increased with advancement of ripening. Starch content decreased with concomitant increase in alcohol soluble sugars. The cell wall constituents viz., cellulose, hemicellulose, and lignin decreased up to R stage, while the pectin content decreased throughout up to OR stage. Among the cell wall hydrolyzing enzymes, polygalacturonase (PG) and cellulase exhibited progressive increase in activity throughout ripening, while pectin methyl esterase (PME) activity increased up to CT stage and then decreased up to OR stage. The maximum increase in the activities of cell wall hydrolysing enzymes was observed between MG and CT stages. The activities of starch hydrolyzing enzymes, α-amylase and β-amylase decreased significantly with advancement of ripening. These changes in the activities of hydrolyzing enzymes could be considered good indicators of ripening in guava.  相似文献   

12.
Oxidative stress is involved in many biological systems, among which are fruit ripening and senescence. Free radicals play an important role in senescence and ageing processes. Plants have evolved antioxidative strategies in which superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) are the most efficient antioxidant enzymes, influencing patterns of fruit ripening. Variations in total SOD and CAT activities were determined at regular intervals during ripening and senescence in on‐tree and cold‐stored apple fruits of the cultivars Fuji and Golden Delicious. In all fruits, internal ethylene concentration was also measured. The results suggest that the onset of ripening, signalled by ethylene burst, is closely related to SOD and CAT activities. In on‐tree fruits the climacteric peak in ethylene was associated with the peaks of SOD and CAT activity in both cultivars. Quite different results were obtained in cold‐stored fruits: Ethylene concentration increased in both cultivars during the storage. CAT activity doubled in both cultivars. SOD activity decreased in Golden Delicious and peaked in Fuji.  相似文献   

13.
The impact of genetic and fruit ripening on hemicelluloses fine structure was studied in twelve near isogenic lines of tomato fruits harboring firmness QTL. The sugar composition and the MALDI-TOF MS oligosaccharides profile after glucanase hydrolysis of the cell walls were determined from all green and red fruits pericarp tissue. MS profiles showed two major series of oligomers attributed to xyloglucan (XG) and glucomannan (GM) with minor peaks for xylan and ions attributed to galacto-oligomers. The oligosaccharides MS intensity varied significantly with the fruit genetic and ripening status. Correlations between MS intensity indicated structural regulations of both XG and GM structures with genetics and ripening. These results point to a region on the tomato chromosome 9 controlling cell wall galactose metabolism.  相似文献   

14.
15.
Cuticular waxes play a pivotal role in limiting transpirational water loss across the primary plant surface. The astomatous fruits of the tomato (Lycopersicon esculentum) 'MicroTom' and its lecer6 mutant, defective in a beta-ketoacyl-coenzyme A synthase, which is involved in very-long-chain fatty acid elongation, were analyzed with respect to cuticular wax load and composition. The developmental course of fruit ripening was followed. Both the 'MicroTom' wild type and lecer6 mutant showed similar patterns of quantitative wax accumulation, although exhibiting considerably different water permeances. With the exception of immature green fruits, the lecer6 mutant exhibited about 3- to 8-fold increased water loss per unit time and fruit surface area when compared to the wild type. This was not the case with immature green fruits. The differences in final cuticular barrier properties of tomato fruits in both lines were fully developed already in the mature green to early breaker stage of fruit development. When the qualitative chemical composition of fruit cuticular waxes during fruit ripening was investigated, the deficiency in a beta-ketoacyl-coenzyme A synthase in the lecer6 mutant became discernible in the stage of mature green fruits mainly by a distinct decrease in the proportion of n-alkanes of chain lengths > C(28) and a concomitant increase in cyclic triterpenoids. This shift in cuticular wax biosynthesis of the lecer6 mutant appears to be responsible for the simultaneously occurring increase of water permeance. Changes in cutin composition were also investigated as a function of developmental stage. This integrative functional approach demonstrates a direct relationship between cuticular transpiration barrier properties and distinct chemical modifications in cuticular wax composition during the course of tomato fruit development.  相似文献   

16.
In tomato, free amino acids increase dramatically during fruit ripening and their abundance changed differentially. More evident is l-glutamate which gives the characteristic “umami” flavor. Glutamate is the principal free amino acid of ripe fruits of cultivated varieties. In this paper, we examined the capacity of tomato fruits to process endogenous as well as exogenous polypeptides during the ripening transition, in order to analyze their contribution to the free amino acid pool. In addition, the activity of some enzymes involved in glutamate metabolism such as γ-glutamyl transpeptidase (γ-GTase), glutamate dehydrogenase (GDH), α-ketoglutarate-dependent γ-aminobutyrate transaminase (GABA-T), alanine and aspartate aminotransferases was evaluated. Results showed that peptidases were very active in ripening fruits, and they were able to release free amino acids from endogenous proteins and glutamate from exogenously added glutamate-containing peptides. In addition, red fruit contained enough γ-GTase activity to sustain glutamate liberation from endogenous substrates such as glutathione. From all the glutamate metabolizing enzymes, GDH and GABA-T showed the higher increase in activities when the ripening process starts. In summary, tomato fruits increase free amino acid content during ripening, most probably due to the raise of different peptidase activities. However, glutamate level of ripe fruit seems to be mostly related to GDH and GABA-T activities that could contribute to increase l-glutamate level during the ripening transition.  相似文献   

17.
The extent of oxidative stress during ripening of saskatoon(AmelanchieralnifoliaNutt.) fruit was examined. Lipid peroxidation duringfruit development from the mature green to the fully ripe (purple)stage was evidenced by the accumulation of ethane and 2-thiobarbituricacid reactive substances. Fruit polar lipid and free fatty acidconcentrations also declined during ripening. Moreover, thedouble bond index of fatty acids in the polar lipid fractionfell during ripening, reflecting a progressive increase in thesaturation of membrane lipids. This increase in saturation waspartly due to a 65% decline in the concentration of linolenicacid. Activities of superoxide dismutase (SOD) and catalase(CAT) fell about 4-fold and 18-fold, respectively, during development,indicating higher potential for the accumulation of cytotoxicH2O2. Peroxidase activity remained relatively low and constantfrom the mature green to the dark red stage of development,then increased towards the end of ripening as fruits turnedpurple. Lipoxygenase (LOX) activity increased 2.5-fold fromthe mature green to the fully ripe stage. Tissue prints showedLOX to be present throughout fruit development and Western analysisrevealed that the increase in activity during ripening was dueto increased synthesis of the enzyme. Collectively, these resultsprovide evidence that ripening of this climacteric fruit isaccompanied by a substantial increase in free-radical-mediatedperoxidation of membrane lipids, probably as a direct consequenceof a progressive decline in the enzymatic systems responsiblefor catabolism of active oxygen species. The role of glutathione-mediatedfree-radical scavenging was also examined as a potential systemfor coping with this increased oxidative stress. Concentrationsof reduced and oxidized glutathione (GSSG) increased 2-foldand GSSG increased as a percentage of total glutathione, reflectingthe increase in oxidative status of fruits during ripening.Tissue prints of glutathione reductase (GRase) and transferase(GTase) showed these enzymes to be distributed throughout thepericarp at all stages of fruit development. GRase and GTaseactivities rose sharply during the later stages of fruit ripening,correlating well with substantial increases in the levels ofboth enzymes. Hence, the glutathione-mediated free-radical scavengingsystem was up-regulated towards the end of ripening, perhapsin response to the increasing oxidative stress resulting fromthe accumulation of lipid hydroperoxides from increased LOXactivity, in conjunction with a decline in SOD/CAT activities.Copyright1998 Annals of Botany Company Amelanchier alnifoliaNutt.; saskatoon fruit; ripening; oxidative stress.  相似文献   

18.
Pepper fruits in green and red maturation stages were selected to study the protein pattern modified by oxidation measuring carbonylated proteins in isolated mitochondria, together with the accumulation of superoxide radical and hydrogen peroxide in the fruits. MALDI‐TOF/TOF analysis identified as carbonylated proteins in both green and red fruits, formate dehydrogenase, NAD‐dependent isocitrate dehydrogenase, porin, and defensin, pointing to a common regulation by carbonylation of these proteins independently of the maturation stage. However, other proteins such as glycine dehydrogenase P subunit and phosphate transporter were identified as targets of carbonylation only in green fruits, whereas aconitase, ATPase β subunit, prohibitin, orfB protein, and cytochrome C oxidase, were identified only in red fruits. In general, the results suggest that carbonylation of mitochondrial proteins is a PTM that drives the complex ripening process, probably establishing the accumulation and functionality of some mitochondrial proteins in the nonclimacteric pepper fruit.  相似文献   

19.
用GC-MS分析不同采收和贮存时期的麻疯树种子油的脂肪酸   总被引:2,自引:0,他引:2  
将采收于青果期、黄果期、黑果期及储存1a、2a的麻疯树种子提油,测定其理化性质,并利用GC-MS分析这5个不同时期的种子所提取的麻疯树种子油成分。结果表明:5个油样的水分、酸值、出油率有较大差异,主要化学成分、碘值、皂化值差异不大。青果的出油率为13.13%,水分为0.66%,酸值为69.21,不饱和脂肪酸含量最低。新采成熟果实的出油率为54.64%,水分为0.36%,酸值为1.51,不饱和脂肪酸含量也相对较高。因此,新采的成熟果实较为适合作生物柴油的原料。  相似文献   

20.
Phosphoenolpyruvate carboxykinase (PEPCK) is present in ripening tomato fruits. A cDNA encoding PEPCK was identified from a PCR-based screen of a cDNA library from ripe tomato fruit. The sequence of the tomato PEPCK cDNA and a cloned portion of the genomic DNA shows that the complete cDNA sequence contains an open reading frame encoding a peptide of 662 amino acid residues in length and predicts a polypeptide with a molecular mass of 73.5 kDa, which corresponds to that detected by western blotting. Only one PEPCK gene was identified in the tomato genome. PEPCK is shown to be present in the pericarp of ripening tomato fruits by activity measurements, western blotting and mRNA analysis. PEPCK abundance and activity both increased during fruit ripening, from an undetectable amount in immature green fruit to a high amount in ripening fruit. PEPCK mRNA, protein and activity were also detected in germinating seeds and, in lower amounts, in roots and stems of tomato. The possible role of PEPCK in the pericarp of tomato fruit during ripening is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号