首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gotoh  Takayuki  Kawata  Masakado 《Hydrobiologia》2000,429(1-3):157-169
Experiments were conducted to examine the effects of a habitat's spatial structure on population variability in two species of freshwater snails (Physa acuta and Austropeplea ollula). To alter the spatial structure of the habitat, vinyl chloride plates were hung in experimental tanks, providing three types of spatial structure: Complex structure, Simple structure and Control (no structure). In Experiment 1, the average number of individuals in a tank did not differ among the three types of structure 2 months after the introduction of the snails, but the variability of the number of individuals in the Complex structure tanks was lowest, whereas the variability in the Control tanks was highest. In Experiment 2, in addition to the spatial structure of the habitat, three types of species interaction were designed as experimental treatments: only P. acuta was introduced into the tanks (P. acuta tanks), only A. ollula was introduced into the tanks (A. ollulatanks) and both P. acuta and A. ollula were introduced into the tanks (two-species tanks). For the P. acuta tanks, the variability of the number of P. acuta individuals in the Complex structure tanks was lowest, and the variability in the Control tanks was highest when the effect of the number of individuals in a tank was subtracted. For the A. ollula tanks and the two-species tanks, there were no significant differences in the variability of the population size among the different treatments of spatial structure. The spatial distribution of P. acuta was more uniform than the distribution of A. ollula on the plates of complex structure. Our results indicate that the spatial structure of the habitat influences the variability of population size (the variance of the number of individuals in different populations during the earlier period after the introduction of the snails), but the effects depend on the spatial behavior of individuals and the interaction with other species.  相似文献   

2.
We examined the growth and reproductive rates of freshwater snails, Physa acuta, in two habitat types. In the Asabata habitat, snails lived in isolated water pools, which occasionally joined to form a single large pool; in the Kakegawa habitat, they lived in a slow-running water way. Genetic structure assessments using three microsatellite loci supports the idea that a stable panmictic population occupies the Kakegawa habitat. The Asabata habitat, however, is occupied with an alternate mixing population as revealed by microsatellite data. The Asabata population might alternate between localized mating within isolated pools (as revealed by high F IS and F IT values) when the water levels are low and panmixia (as revealed by the low F ST values and AMOVA analysis) when the habitat is flooded. Laboratory experiments, using snails collected from the two habitats, showed that juvenile snails grew faster, laid more eggs, and laid them earlier in the Asabata habitat than in the Kakegawa habitat. Growth rates were lower at high density than at low density in the Kakegawa habitat; the inverse was true in the Asabata habitat. Density-dependent response of individual snail reproduction was higher in the Kakagawa habitat than in the Asabata habitats. The results support the hypothesis that spatial structure affects the evolution of density-dependent growth rates and of timing for reproduction.  相似文献   

3.
Individual organisms interact directly through behavior, and indirectly through resource consumption and environment modification. The effects of different kinds of interactions on individual growth and reproduction will differ. Freshwater snails may interact directly for food resources and indirectly through substances dissolved in water. I separated the effects of the direct behavioral interaction and indirect interaction through waters using laboratory experiments with freshwater snails Physa acuta. Behavioral direct interaction have negative effects on the growth, but indirect interaction through water environments has positive effect on the growth. The importance of distinction of different kinds of interactions were discussed.  相似文献   

4.
Heavy metal concentrations in three freshwater snails, an aquatic plant, sediment, and water from Azraq Oasis pools in the Jordanian desert were measured by atomic absorption spectrophotometry. There were significant differences in metal accumulation among snail species. These snails are ranked according to their metal accumulation capacity in the order: Melanoides tuberculata > Melanopsis praemorsa > Theodoxus jordani. Although there were no significant differences among the size classes of these snails in metal concentrations, larger snails contained generally higher levels of metals than the smaller ones. The concentration factors for the selected snails exceeded 103, while it ranged from 0.1–10.2 × 103 for Typha angustata plants. Among sampling sites, metal concentrations in M. praemorsa, T. angustata, sediment, and water were not significantly different, except for Fe in M. praemorsa which was highest at station 3, and Cd and Cr which were highest in water and sediment of station 4. The seasonal variation in metal content was found to be species and metal-dependent.  相似文献   

5.
We have examined the resistance to desiccation among rock-dwelling land snails of various phylogenetic groups:Cristataria genezarethana (Clausiliidae),Rupestrella rhodia (Chondrinidae) andLevantina caesareana (Helicidae), all from the same location in Israel.L. caesareana was the most resistant andR. rhodia the least resistant to desiccation andC. genezarethana was of intermediate resistance. Differences in the rates of water loss during desiccation were determined mainly by rate of water loss during the first 2 days of desiccation. The high rates of water loss in rock-dwelling species exceed those of other snails in the Mediterranean habitat of Israel. However, snails collected in the field at the end of aestivation were in only a mild state of dehydration, suggesting that the rocky habitat protects its occupants against desiccation. We also suggest that among the rock-dwelling species, the protective role of the rock is more important in the more evolutionarily primitive genera (the chondrinidRupestrella and the clausiliidCristataria) and that physiological capacities are more effective in the more highly evolved helicidLevantina.  相似文献   

6.
1. Studies of species distributions across environmental gradients further our understanding of mechanisms regulating species diversity at the landscape scale. For some freshwater taxa the habitat gradient from small, shallow and temporary ponds to large, deep and permanent lakes has been shown to be an important environmental axis. Freshwater snails are key players in freshwater ecosystems, but there are no comprehensive studies of their distributions across the entire freshwater habitat gradient. Here we test the hypothesis that snail species in the family Physidae are distributed in a non‐random manner across the habitat gradient. We sampled the snails, their predators and the abiotic environment of 61 ponds and lakes, spanning a wide range in depth and hydroperiod. 2. Temporary habitats had the lowest biomass of predators. Shallow permanent ponds had the highest biomass of invertebrate predators but an intermediate fish biomass. Deep ponds and lakes had the highest fish biomass and intermediate invertebrate biomass. Five species of physids occurred in the regional species pool and 60 of the 61 ponds and lakes surveyed contained physid snails. Each pond and lake contained an average of just 1.2 physid species, illustrating limited membership in local communities and substantial among‐site heterogeneity in species composition. 3. Physids showed strong sorting along the habitat gradient, with Physa vernalis found in the shortest hydroperiod ponds and Aplexa elongata, P. gyrina, P. acuta and P. ancillaria found in habitats of successively greater permanence. When organised into a site‐by‐species incidence matrix with sites ordered according to their hydroperiods, we found the pattern of incidence to be highly coherent, showing that much of the heterogeneity in species composition from one pond to another is explained by hydroperiod. We also found that the number of species replacements along this gradient was higher than random, showing that replacement is more important than nesting in describing species composition in ponds of different hydroperiod. 4. Discriminant analysis showed that pond depth, invertebrate biomass and fish biomass were the best predictors of species composition. Analysis of these niche dimensions showed that P. vernalis and A. elongata were most successful in shallow, temporary ponds with few predators. P. gyrina and P. acuta were typically found in ponds of intermediate depth and high predator abundance. P. ancillaria was found in the deepest lakes, which had abundant fish predators but few invertebrate predators. Of the five species considered, P. ancillaria, P. vernalis and A. elongata were relatively specialised with regard to key habitat characteristics, P. gyrina was moderately generalised and P. acuta was remarkably generalised, since it alone occurred across the entire freshwater habitat gradient. The exceptional habitat breadth of P. acuta stands in contrast to distributional studies of other freshwater taxa and deserves further attention.  相似文献   

7.
Turner AM  Chislock MF 《Oecologia》2007,153(2):407-415
Studies in lakes show that fish and crayfish predators play an important role in determining the abundance of freshwater snails. In contrast, there are few studies of snails and their predators in shallow ponds and marshes. Ponds often lack fish and crayfish but have abundant insect populations. Here we present the results of field surveys, laboratory foraging trials, and an outdoor mesocosm experiment, testing the hypothesis that insects are important predators of pulmonate snails. In laboratory foraging trials, conducted with ten species of insects, most insect taxa consumed snails, and larval dragonflies were especially effective predators. The field surveys showed that dragonflies constitute the majority of the insect biomass in fishless ponds. More focused foraging trials evaluated the ability of the dragonflies Anax junius and Pantala hymenaea to prey upon different sizes and species of pulmonate snails (Helisoma trivolvis, Physa acuta, and Stagnicola elodes). Anax junius consumed all three species up to the maximum size tested. Pantala hymenaea consumed snails with a shell height of 3 mm and smaller, but did not kill larger snails. P. acuta were more vulnerable to predators than were H. trivolvis or S. elodes. In the mesocosm experiment, conducted with predator treatments of A. junius, P. hymenaea, and the hemipteran Belostoma flumineum, insect predators had a pronounced negative effect on snail biomass and density. A. junius and B. flumineum reduced biomass and density to a similar degree, and both reduced biomass more than did P. hymenaea. Predators did not have a strong effect on species composition. A model suggested that A. junius and P. hymenaea have the largest effects on snail biomass in the field. Given that both pulmonate snails and dragonfly nymphs are widespread and abundant in marshes and ponds, snail assemblages in these water bodies are likely regulated in large part by odonate predation.  相似文献   

8.
The New Zealand mud snail Potamopyrgus antipodarum (Hydrobiidae) and the pulmonate Physella acuta (Physidae) have invaded freshwaters in many parts of the world and become established. They co-exist in many streams, lakes and ponds in New Zealand, often at high densities. In the present study the effects of intraspecific- and interspecific interactions between the two species on growth and reproductive output were examined in laboratory mesocosms. In 30-day experiments, growth of Potamopyrgus antipodarum was lower in high density treatments than controls providing evidence for competition at higher densities of both snail species. No competitive effect was obtained for Physella acuta when controls were compared with high-density treatments, but growth was reduced at high densities of conspecifics. Numbers of juveniles released by Potamopyrgus antipodarum in 40 day trials declined at high snail densities and were lowest at high densities of conspecifics. Egg production by Physella acuta was also reduced at high snail densities. However, when the two species were kept together at equal densities (total snail density twice that of controls), egg production by Physella acuta was significantly higher than in all other treatments, suggesting facilitation by the congenor. Lastly, in a 10-day experiment, Physella acuta grew faster in water conditioned by Potamopyrgus antipodarum than in Physa-conditioned water, whereas Potamopyrgus antipodarum showed no growth response to Physella-conditioned water. Overall, our results indicate that growth and reproductive output of both snail species are influenced more by the density of conspecifics than the presence and density of the other species. The successful co-existence of the two species in New Zealand freshwaters therefore may be a reflection, at least in part, of few competitive interactions between them.  相似文献   

9.
Understanding the interspecific interactions of Procambarus clarkii with other aquatic macroinvertebrates will help to unveil the mechanisms and processes underlying biological invasiveness. The purpose of this study was to investigate predator–prey interactions of two ontogenic phases of P. clarkii with native and exotic species of aquatic macroinvertebrates at a single and multiple prey level. We performed laboratory experiments to determine the consumption and the behavioral responses of Chironomus riparius, Physa acuta and Corbicula fluminea to P. clarkii. The presence of P. clarkii significantly affected the abundance of C. riparius and P. acuta, but not of C. fluminea whether prey species were provided singly or simultaneously. The consumption of C. riparius by P. clarkii was higher than P. acuta for both crayfish sizes and situations (single/multiple prey systems) and C. fluminea was never consumed. Physa acuta was the only species that exhibited an anti-predator behavior to P. clarkii. Our results show that P. clarkii can have strong consumptive and trait effects on aquatic macroinvertebrate prey at a single and multiple prey level, resulting in differential impacts on different prey species. This study clarifies some aspects of the predator–prey interactions between P. clarkii and native as well as other exotic macroinvertebrate species that have invaded freshwater biocenosis worldwide.  相似文献   

10.
The aim of this investigation is to study some freshwater snails as bioindicator for heavy metals Cd, Cu and Pb by determining the concentration of these metals in the field water samples and in whole snail tissues. Seven freshwater snails were used in the present study, some of which are considered medically important snails in Egypt, Biomphalaria alexandrina and Bulinus truncatus, the intermediate hosts for schistosomiasis and nontarget snails Bellamya unicolor, Cleopatra bulimoides, Helisoma duryi, Physa acuta and Theodoxus niloticus. Samples of snails were gathered from three Egyptian governorates: Damietta, Giza and Monufia.. The snails were arranged according to their accumulated concentration of the above‐mentioned microelements in descending order as follows: C. bulimoides > H. duryi > B. truncatus > B. alexandrina >P. acuta > B. unicolor > T. niloticus. It is concluded from the analysis of water and the investigated snails that these snails can accumulate Cu, Pb and Cd with high concentrations in their bodies, so they can be used as bioindicators for heavy metals.  相似文献   

11.
Summary The iron storage protein, ferritin, is the major yolk protein in freshwater snails. In this report we show by in vitro labelling experiments that yolk ferritin of the snails Lymnaea stagnalis L. and Planorbarius corneus L. is an exogenous protein synthesized in the midgut gland and secreted into the hemolymph. Gonad and mantle tissue are inactive in the synthesis of yolk ferritin, but, together with the midgut gland, they synthesize another ferritin type (soma ferritin) which is not released into the hemolymph and which may be a housekeeping ferritin. Soma ferritin and yolk ferritin are not in a precursor/product relationship since subunits of both ferritins are synthesized as primary translation products in rabbit reticulocyte lysate programmed with poly (A)+ RNA from midgut gland and gonad. Results suggest that both ferritins are synthesized on different mRNAs (and possibly on different genes) so they may be regulated in a different way.  相似文献   

12.
With ecosystems increasingly supporting multiple invasive species, interactions among invaders could magnify or ameliorate the undesired consequences for native communities and ecosystems. We evaluated the individual and combined effects of rusty crayfish (Orconectes rusticus) and Chinese mystery snails [Bellamya (=Cipangopaludina) chinensis] on native snail communities (Physa, Helisoma and Lymnaea sp.) and ecosystem attributes (algal chlorophyll a and nutrient concentrations). Both invaders are widespread in the USA and commonly co-occur within northern temperate lakes, underscoring the importance of understanding their singular and joint effects. An outdoor mesocosm experiment revealed that while the two invaders had only weakly negative effects upon one another, both negatively affected the abundance and biomass of native snails, and their combined presence drove one native species to extinction and reduced a second by >95%. Owing to its larger size and thicker shell, adult Bellamya were protected from crayfish attack relative to native species (especially Physa and Lymnaea), suggesting the co-occurrence of these invaders in nature could have elevated consequences for native communities. The per capita impacts of Orconectes (a snail predator) on native snails were substantially greater than those of Bellamya (a snail competitor). Crayfish predation also had a cascading effect by reducing native snail biomass, leading to increased periphyton growth. Bellamya, in contrast, reduced periphyton biomass, likely causing a reduction in growth by native lymnaeid snails. Bellamya also increased water column N:P ratio, possibly because of a low P excretion rate relative to native snail species. Together, these findings highlight the importance of understanding interactions among invasive species, which can have significant community- and ecosystem-level effects.  相似文献   

13.
The Bulinus africanus species group (Planorbidae) of freshwater snails has been reported to be represented in Zambia by two species, B. africanus (Krauss) and B. globosus (Morelet), both named as intermediate hosts for Schistosoma haematobium. Uncertainty in identification of these snails from morphology led to the present investigation, combining morphometry (shell and copulatory organ) with enzyme analysis. Observations of both kinds were made usually on the same individual snails, from collecting sites mostly in the Lusaka area or at Lake Kariba. Particular attention was given to the proportional relationship between the penis sheath and the preputium of the copulatory organ, a character used previously to distinguish B. africanus from B. globosus in south-eastern Africa. The enzyme profile MDH-1, AcP-2, PGD-1 and PGM-2 was common to all snails examined from 25 populations; GPI and HBDH were polymorphic. The enzyme data indicate that the samples represent a single species. Shell characters varied continuously. The copulatory organ was generally of the form known for B. globosus. Although the copulatory organ of a few individuals had proportions overlapping the range reported for B. africanus, the present variation was continuous and was not bimodal. It is concluded that all these specimens are conspecific and may be identified as B. globosus. Previous identifications of B. africanus from Zambia appear to need substantiation and it seems that if this species is present at all in the sampled areas, it must be uncommon. It is relevant in regard to possible strain differences within S. haematobium in Zambia, that our observations indicate that only a single species of intermediate host is involved in transmission.  相似文献   

14.
The structure of gastropod communities was examined from January to June 1999 in four sites of the streams of Mont Saint-Michel Bay along a gradient of salinity, and the occurrence of larval trematodes infecting snails was studied. Abundance and species richness of gastropods increased from polyhaline (95 snails, 1 species) to oligohaline waters (6672 snails, 6 species). Whatever the salinity, the most abundant species was Potamopyrgus antipodarum, an invasive non-indigenous species that represented 80% of the gastropods. Only one male was found in P. antipodarum populations suggesting a predominantly parthenogenetic mode of reproduction. Among 7218 gastropods collected, 1.2% were infected by larval trematodes: 5 species in Lymnaea peregra (4.4%), 4 species in Planorbis planorbis (12.0%), one echinostome in Physa acuta (0.2%), and a new species of Sanguinicola in P. antipodarum (0.5%). This is the first record of infected P. antipodarum in Europe. No parasites were found in polyhaline waters. The prevalence per host population varied from 0 to 100% depending on time of collection, salinity and host species. In the lowest-salinity site, abundance of gastropods and prevalence of trematodes were negatively correlated. The dominance of P. antipodarum in the gastropod communities is discussed in relation with euryhalinity, parthenogenesis and weak rate of parasitism.  相似文献   

15.
Invasive species are one of the most serious threats to amphibian populations. We investigated the effects of two invasive (Pomacea canaliculata and Physella acuta) and one native (Radix sp.) snail species on five species of wetland-breeding frogs in Hong Kong. We quantified embryonic survivorship and determined whether particular attributes of amphibian egg masses influenced consumption by snails. P. canaliculata preyed on four of the species, consuming >90 % of eggs of Microhyla fissipes and Fejervarya limnocharis, nearly 70 % of eggs of Kaloula pulchra, approximately 40 % of eggs of Duttaphrynus melanostictus, but no eggs of Polypedates megacephalus. P. acuta and Radix sp. consumed only the eggs of K. pulchra, but those eggs were probably non-viable. This study shows that P. canaliculata, which occurs at high densities in tropical East Asia, may be an important predator of amphibian eggs. Future research should evaluate their effects on amphibian populations, community structure, and food web dynamics.  相似文献   

16.
Summary Freshwater snails and anuran tadpoles have been suggested to have their highest population densities in ponds of intermediate size where abiotic disturbance (e.g. desiccation) is low and large predators absent. Both snails and tadpoles feed on periphytic algae and, thus, there should be a large potential for competitive interactions to occur between these two distantly related taxa. In a field experiment we examined the relative strength of competition between two closely related snail species, Lymnaea stagnalis and L. peregra, and between L. stagnalis and tadpoles of the common frog, Rana temporaria. Snail growth and egg production and tadpole size at and time to metamorphosis were determined. Effects on the common food source, periphyton, were monitored with the aid of artificial substrates. Periphyton dry weight was dramatically reduced in the presence of snails and/or tadpoles. There were no competitive effects on growth or egg production of the two snail species when they were coexisting. Mortality of L. peregra was high (95%) after reproduction, but independent of treatment. Growth of L. stagnalis was reduced only at the highest tadpole densities, whereas egg production was reduced both by intraspecific competition and by competition with tadpoles. Differences in egg production were retained after tadpole metamorphosis. Tadpole larval period increased, weight of metamorphosing frogs decreased and growth rate was reduced as a function of increasing tadpole density. However, contrary to expectation, snails had a positive effect on tadpole larval period, weight and growth rate. Further, in experimental containers without snails there was a dense growth of the filamentous green alga Cladophora sp. We suggest that the facilitative effects of snails on tadpoles are due to an indirect mutualistic mechanism, involving competition between food sources of different quality (microalgae and Cladophora sp.) and tadpoles being competitively dominant over snails for the preferred food source (microalgae). In the presence of tadpoles snails will be forced to feed on low-quality Cladophora, increasing nutrient turnover rates, which results in enhanced productivity of microalgae, increasing tadpole food resources. Thus, tadpoles have a negative effect on snails through resource depression, while snails facilitate tadpole growth through an indirect enhancement of food availability.  相似文献   

17.
Experimental and field studies suggest that freshwater snail species have negative effects on each other's population growth rates. Because snails share similar diets, these interactions have been interpreted as the result of exploitative competition, but they could also result from intraguild predation. Here we present three experiments aimed at testing the hypothesis that interspecific interactions among three species of freshwater gastropod (Helisoma trivolvis, Physa acuta and Stagnicola elodes) are mediated by intraguild egg predation. Foraging trials, conducted in a laboratory, showed that some snails readily prey on eggs, but the extent of egg predation depended on both the identity of the snail predator and the identity of the egg mass. Of the three species considered, Stagnicola had the largest effect on egg mortality and Physa had no effect on egg mortality. Foraging trials also showed that the eggs of Physa were the most vulnerable to predators and that the eggs of Stagnicola were largely invulnerable. A study conducted in large outdoor mesocosms assessed the occurrence of egg mortality in an environment of more extensive spatial scale and complexity. The results largely mirrored those of the laboratory study, with Stagnicola being the most voracious predator and the eggs of Physa being most vulnerable to predation. The reproductive success of Physa and Stagnicola raised in sympatry and allopatry was assessed in a mesocosm study conducted over three months. Recruitment of both species was depressed in sympatry, but patterns of growth in the survivors suggest contrasting mechanisms of suppression: Physa suppressed Stagnicola via exploitative competition, but Stagnicola suppressed Physa via egg predation. These experiments support the hypothesis that freshwater snail assemblages are structured by strong interspecific interactions and that a rich interplay of egg predation and interspecific competition underlie interactions among the members of this guild.  相似文献   

18.
R. H. Britton 《Hydrobiologia》1985,122(3):219-230
The life cycle and annual production of Hydrobia acuta was studied in a hypersaline lagoon (s = 39 in summer), forming a part of solar salt works. Quantitative random samples were taken at regular intervals over a period of 15 months using a corer, and snails collected were counted and measured. Weight and biomass was calculated from a length-weight relationship and from measurements of ash content. H. acuta was a strictly annual species in the study lagoon. Recruitment takes place over a brief period in May and June, after which the breeding population dies. Growth of the new generation was slow during summer, probably due to the unfavourably high salinity. A period of rapid growth took place in autumn coinciding with a drop in salinity caused by rainfall. In winter Hydrobia hibernated by burrowing deeply into the sediment. Growth recommenced in spring when the lagoon was reflooded, but by this time the number of survivors was low.The maximum density of snails was 6 000 m–2 and maximum biomass 500 mg organic dry wt · m–2. Annual cohort production was estimated as 786 mg organic dry wt · m–2 · a–1. These figures are low compared to other studies on hydrobiid snails, and for production in inland waters, but the value for annual P/B = 4.5 is typical for a univoltine species. The relevance of the results to foraging by wading birds (the main consumers), is discussed.  相似文献   

19.
Allelopathy of filamentous green algae (FGA) has been less studied than that of macrophytes. Little Budworth Pool, Cheshire, UK is a small, shallow, clear-water lake with high TP concentrations, very high NO3-N concentrations, only moderate phytoplankton density, high FGA growth (mainly Spirogyra sp.) and no submerged plants. Experiments were carried out to test the possible allelopathic effects of Spirogyra on the phytoplankton of this lake and on a submerged plant Elodea nuttallii. Changes in phytoplankton growth, phytoplankton species dynamics and species composition were apparently not influenced by allelopathy of live or decaying Spirogyra. A shift from diatom (Cyclotella sp) – cryptomonad (Chroomonas acuta and Cryptomonas erosa) dominance to Chlorococcales (Micractinium pusillum, Monoraphidium contortum and Scenedesmus opoliensis) – Volvocales (Chlorogonium elongatum and Pandorina morum) dominance was recorded in both control and FGA treatments, suggesting an effect of nutrient enrichment. Nutrient concentrations and differences in competitiveness among phytoplankton species can also explain differences in their growth rates in Spirogyra filtrate. Spirogyra also did not influence apex number per plant, shoot length or growth rate of E. nuttallii. This FGA species probably cannot control phytoplankton or E. nuttallii growth in nutrient rich conditions through allelopathy.  相似文献   

20.
The Mediterranean population of the exotic eastern mosquitofish Gambusia holbrooki (Agassiz 1859) (Osteichthyes, Poeciliidae) has been held responsible for causing eutrophication due to zooplankton removal and phytoplankton enhancement, however no experimental evidence exists of this. To test this allegation, an enclosure experiment was conducted in spring in an oligohaline coastal marsh. The manipulation of fish density had profound effects on zooplankton, whose density greatly decreased when the occurrence of mosquitofish increased. Cladocerans and ostracods were more affected by mosquitofish than cyclopoid copepods, whilst rotifer density was not modified. Changes in zooplankton density did not cascade to lower trophic levels as no differences were observed between the chlorophyll concentration in fish and fish-less enclosures. This is because zooplankton was dominated by species with low filter-feeding rates, such as small cladocerans. In consequence, the total macrophyte standing crop was not affected. The only benthic macroinvertebrate species whose density increased in the absence of eastern mosquitofish was the mud snail P. acuta. Higher numbers of snails explain why the standing crop of the filamentous green algae Oedogonium sp. decreased in fish-less enclosures. The density of chironomid midge larvae did not increase in fish-less enclosures, because eastern mosquitofish forage on them mainly during summer, when zooplankton has already been depleted; nor were damselflies, probably because they are too large. Nitrogen concentration decreased after fish exclusion, but phosphorus concentration remain unchanged. In conclusion, it was found that the eastern mosquitofish affect zooplankton of the Mediterranean oligohaline lagoons considerably, but they do not enhance phytoplankton growth, because the system is bottom-controlled by submerged macrophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号