首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By combining the knowledge gained from an analysis of the biophysical properties of natural antibody variable domains, the effects of mutations obtained in directed evolution experiments, and the detailed structural comparison of antibodies, it has now become possible to engineer antibodies for higher thermodynamic stability and more efficient folding. This is particularly important when antibodies are to be used under conditions where the disulfide bonds cannot form, i.e., in intracellular applications (as "intrabodies"). We describe in detail two methods for the knowledge-based improvement of antibody stability and folding efficiency. While CDR grafting from a non-human to the most closely related human antibody framework is an established technique to reduce the immunogenicity of a therapeutic antibody, CDR grafting for stabilization implies the use of a more distantly related acceptor framework with superior biophysical characteristics. The use of such dissimilar frameworks requires particular attention to antigen contact residues outside the classical CDR definition and to residues capable of indirectly affecting the conformation of the antigen binding site. As a second alternative, the stability of a suboptimal framework can be improved by the introduction of point mutations designed to optimize key residue interactions. We describe the analysis methods used to identify such point mutations, which can be introduced all at once, while maintaining the framework features necessary for antigen binding. These rational approaches render the continued "rediscovery" of certain mutations by directed evolution unnecessary, but they can also be used in conjunction with such methods to discover even better molecules.  相似文献   

2.
《MABS-AUSTIN》2013,5(5):838-852
Knowledge of the 3-dimensional structure of the antigen-binding region of antibodies enables numerous useful applications regarding the design and development of antibody-based drugs. We present a knowledge-based antibody structure prediction methodology that incorporates concepts that have arisen from an applied antibody engineering environment. The protocol exploits the rich and continuously growing supply of experimentally derived antibody structures available to predict CDR loop conformations and the packing of heavy and light chain quickly and without user intervention. The homology models are refined by a novel antibody-specific approach to adapt and rearrange sidechains based on their chemical environment. The method achieves very competitive all-atom root mean square deviation values in the order of 1.5 Å on different evaluation datasets consisting of both known and previously unpublished antibody crystal structures.  相似文献   

3.
After the appearance of the first FDA-approved antibody 25 years ago, antibodies have become major therapeutic agents in the treatment of many human diseases, including cancer and infectious diseases, and the use of antibodies as therapeutic/diagnostic agents is expected to increase in the future. So far, a variety of strategies have been devised for engineering of these fascinating molecules to develop superior properties and functions. Recent progress in systems biology has provided more information about the structures and cellular networks of antibodies, and, in addition, recent development of biotechnology tools, particularly in regard to high-throughput screening, has made it possible to perform more intensive engineering on these substances. Based on a sound understanding and new technologies, antibodies are now being developed as more powerful drugs. In this review, we highlight the recent, significant progress that has been made in antibody engineering, with a particular focus on Fc engineering and glycoengineering for improved functions, and cellular engineering for enhanced production of antibodies in yeast and bacterial hosts.  相似文献   

4.
A specific protein assay system based on functional liposome-modified gold electrodes has been demonstrated. To fabricate such assay system, a liposome layer was initially grown on top of a gold layer. The liposome layer contained two kinds of functional molecules: biotin molecules for the binding sites of streptavidin and N-(10,12-pentacosadiynoic)-acetylferrocene molecules for the facile redox probe in electrochemical detections. Then, streptavidin was attached on the functional liposme-modified layer using the interaction of streptavidin-sbiotin complex. On the streptavidin-attached surface, antibody molecules, anti-human serum albumin antibodies could be immobilized without any secondary antibodies. AFM imaging of the streptavidin-attached liposome surface revealed a uniform distribution of closely packed streptavidin molecules. In situ quartz-crystal microbalance and electrochemical measurements demonstrated that the wanted antibody-antigen reactions should occur with high specificity and selectivity. Our specific antibody assay system, based on a functional liposome modified electrode, can be developed further to yield sophisticated structures for numerous protein chips and immunoassay sensors.  相似文献   

5.
Two hybridomas producing monoclonal antibodies to poly(adenosine diphosphate ribose) [poly(ADP-Rib)] were established. One antibody, 10H (IgG3, kappa), bound to most of the poly(ADP-Rib) preparation, which consisted of molecules of various sizes of more than 20 ADP-Rib residues. The binding of this antibody was inhibited by not only poly-(ADP-Rib) but also a monomer unit of poly(ADP-Rib), Ado(P)-Rib-P. The sites protected by antibody 10H were isolated and analyzed by hydrolysis with alkaline phosphomonoesterase and then snake venom phosphodiesterase. The sites contained the same amounts of monomer units and branched portions [Ado(P)-Rib(P)-Rib-P] as the original poly(ADP-Rib) molecules but a lower average number of branched portions per molecule than in the original molecules. The other antibody, 16B (IgM, lambda), reacted with only 50% of the radioactive poly(ADP-Rib), and its binding was not inhibited by a monomer unit. This antibody protected 25% of all the poly(ADP-Rib) molecules from hydrolysis by snake venom phosphodiesterase. The protected sites contained twice as many branched portions per molecule as the original poly(ADP-Rib) molecules. These results show that the two monoclonal antibodies recognize different structures of poly-(ADP-Rib); 10H antibody recognizes the linear structure with ribose-ribose linkages, and 16B antibody may recognize specific structures, including the branched portions of poly-(ADP-Rib).  相似文献   

6.
Molecular engineering antibodies has made it possible to produce specific domains of the antibody molecule and combine them with other protein domains to achieve new properties. Using site directed mutagenesis, amino acid residues can be exchanged within the binding site; and, by analysis of crystal structures, the positions of these amino acids can be determined in three dimensions at atomic resolution. In addition, gene libraries and phage selection technology can be used to generate new antibody fragments directly from a gene pool. Both mutagenesis and selection from libraries offer opportunities to identify antibody-derived molecules with altered and useful antigen recognition properties. The detailed analysis both kinetic and equilibrium binding affinity are therefore essential to understand the activity of the molecules resulting from antibody engineering and to guide the progress of their further design. The paper reviews recently evolving techniques for the binging analysis of antibodies, their functional domains and antibody chimerae.  相似文献   

7.
The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates.  相似文献   

8.
《MABS-AUSTIN》2013,5(3):577-618
The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates.  相似文献   

9.
Molecular dynamics at 300 K was used as a conformation searching tool to analyze a knowledge-based structure prediction of an anti-insulin antibody. Solvation effects were modeled by packing water molecules around the antigen binding loops. Some loops underwent backbone and side-chain conformational changes during the 95-ps equilibration, and most of these new, lower potential energy conformations were stable during the subsequent 200-ps simulation. Alterations to the model include changes in the intraloop, main-chain hydrogen bonding network of loop H3, and adjustments of Tyr and Lys side chains of H3 induced by hydrogen bonding to water molecules. The structures observed during molecular dynamics support the conclusion of the previous paper that hydrogen bonding will play the dominant role in antibody-insulin recognition. Determination of the structure of the antibody by x-ray crystallography is currently being pursued to provide an experimental test of these results. The simulation appears to improve the model, but longer simulations at higher temperatures should be performed.  相似文献   

10.
Micrographs are presented of antibodies in combination with flagella of Salmonella typhi and with a phage-bound pyocine Rmc, which is supposed to be the tail of a defective bacteriophage from Pseudomonas aeruginosa. The pyocine preparation seems to offer advantages for the study of antibody-antigen complexes. Under the conditions of our experiments, the surfaces of the antigenic structures are saturated with antibody layers approximately 95 A in thickness, i.e., slightly less than half the accepted lengths of 7S antibody molecules. Our interpretation is that the antibody is attached by combining sites at the ends of the molecules to form loops along the surface of the antigenic structures.  相似文献   

11.
本文利用两株针对HAFP分子不同抗原决定簇的单克隆抗体,鉴定HAFP酶解片断的抗原抗体反应性质,并同完整HAFP分子进行比较。结果表明,酶解片断上失去了一株单克隆抗体所对应的分子部份,完整保留着另一株单克隆抗体所识别的抗原决定簇,从而证实HAFP分子某些抗原结构之间具有可分割性。  相似文献   

12.
Within the biomedical and pharmaceutical communities there is an ongoing need to find new technologies that can be used to elucidate disease mechanisms and provide novel therapeutics. Antibodies are arguably the most powerful tools in biomedical research, and antibodies specific for extracellular or cell-surface targets are currently the fastest growing class of new therapeutic molecules. However, the majority of potential therapeutic targets are intracellular, and antibodies cannot readily be leveraged against such molecules, in the context of a viable cell or organism, because of the inability of most antibodies to form stable structures in an intracellular environment. Advances in recent years, in particular the development of intracellular screening protocols and the definition of antibody structures that retain their antigen-binding function in an intracellular context, have allowed the robust isolation of a subset of antibodies that can function in an intracellular environment. These antibodies, generally referred to as intrabodies, have immense potential in the process of drug development and may ultimately become therapeutic entities in their own right.  相似文献   

13.
Cell adhesion molecules: detection with univalent second antibody   总被引:10,自引:2,他引:8       下载免费PDF全文
Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against certain cell surface molecules of Dictyostelium discoideum blocks cell-cell adhesion when the in vitro assay is performed in the presence of univalent goat anti-rabbit antibody. Under appropriate experimental conditions, the univalent second antibody blocks agglutination induced by the rabbit antibody without significantly interfering with its effect on cell-cell adhesion. This method promises to be useful for screening monoclonal antibodies raised against potential cell adhesion molecules because: (a) it allows for the screening of large numbers of antibody samples without preparation of univalent fragments; and (b) it requires much less antibody because of the greater affinity of divalent antibodies for antigens.  相似文献   

14.
We have performed experiments to investigate possible physical interactions between C receptors (CR) and surface Ig (sIg) on the B cell plasma membrane. These molecules were found to be independent, non-linked, B cell surface structures, because capping CR1, CR2, sIgM, or sIgD with a specific antibody did not affect the distribution of the remainder of these molecules. Both CR1 and CR2, if bound by antibodies that did not independently cap CR, however, became associated with cross-linked sIg because CR that have been bound by intact anti-CR antibodies or their Fab fragments co-capped with sIgM or sIgD that had been bound by divalent anti-IgM or anti-IgD antibody. CR1 that had bound C3b similarly co-capped with sIg when sIg was cross-linked. Ligand-bound or even cross-linked CR did not associate with non-cross-linked sIg because sIgD, bound by a univalent Fab fragment of anti-IgD antibody, did not co-cap with CR that had been cross-linked by a sandwich of mouse anti-CR antibody and goat anti-mouse Ig. Other surface molecules, such as B1 and HLA-DR Ag, when bound by specific antibodies, did not cap with cross-linked sIg, and sIgD, when bound by a univalent Fab fragment of anti-IgD antibody, did not co-cap with cross-linked sIgM. Interactions between CR and sIg were not mediated by an association with IgG FcR because co-capping of CR and sIg was observed when F(ab')2 fragments of both anti-CR and anti-Ig antibodies were used. These results demonstrate that B cell surface CR can become associated with sIg, but only if sIg is cross-linked and CR is bound by anti-CR antibody or has bound its natural ligand.  相似文献   

15.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

16.
The antibody response to alpha 1 leads to 3 dextran (DEX) in BALB/c mice consists of a family of closely related yet highly heterogeneous molecules. Although these antibodies have been previously characterized both idiotypically and structurally, detailed analysis of responding clones has not been possible using conventional anti-idiotype antibodies. Monoclonal syngeneic and allogeneic anti-idiotype antibodies (MAIDs) specific for anti-DEX antibodies were used in this study to dissect the serum antibody response to DEX in BALB/c mice. The constructed MAIDs showed considerable heterogeneity by isoelectric focusing and by their binding characteristics to a series of DEX specific myeloma and hybridoma proteins. The predominant heavy chain isotype of these MAIDs was gamma 1. These antibodies were used to identify individual idiotypic structures (IdI) on J558, or M104E as well as cross-reactive determinants common to both (IdX). Although both IdX and IdI MAIDs were obtained, IdI specific antibodies were obtained more frequently. BALB/c mice immunized with DEX produced antibodies expressing both IdI but in highly variable amounts. A large percentage of, but not all DEX specific antibody, could be accounted for by IdX bearing antibodies. Suppression of adult and neonatal mice by IdI specific MAIDs was effective with precise elimination of only those clones expressing IdI determinants leaving the total lambda bearing anti-DEX response intact. Suppression of adults and neonates by an IdX specific MAID resulted in a temporary and partial suppression of the total lambda bearing anti-DEX response along with total suppression of the IdX portion of the response. Unlike other systems these monoclonal antibodies produce only suppression, and under a variety of conditions enhancement of anti-DEX responses has not been observed.  相似文献   

17.
《MABS-AUSTIN》2013,5(6):539-547
With 23 approvals in the US and other countries and 4 approvals outside US, antibodies are now widely recognized as therapeutic molecules. The therapeutic and commercial successes met by rituximab, trastuzumab, cetuximab and other mAbs have inspired antibody engineers to improve the efficacy of these molecules. Consequently, a new wave of antibodies with engineered Fc leading to much higher effector functions such as antibody-dependent cell-mediated cytotoxicity or complement-dependent cytotoxicity is being evaluated in the clinic, and several approvals are expected soon. In addition, research on a different class of antibody therapeutics, bispecific antibodies, has recently led to outstanding clinical results, and the first approval of the bispecific antibody catumaxomab, a T cell retargeting agent that was approved in the European Union in April 2009. This review describes the most recent advances and clinical study results in the field of bispecific antibodies, a new class of molecules that might outshine conventional mAbs as cancer immunotherapeutics in a near future.  相似文献   

18.
Many diagnostic and therapeutic applications of monoclonal antibodies require the covalent linking of effector or reporter molecules to the immunoglobulin polypeptides. Existing methods generally involve the non-selective modification of amino acid side chains, producing one or more randomly distributed attachment sites. This results in heterogeneous labelling of the antibody molecules and often to a decrease in antigen-binding due to the modification of residues close to the antigen-binding site. We report a novel strategy for site-specifically labelling antibodies through surface cysteine residues. Examination of molecular structures was used to identify amino acids of the CH1 domain of the IgG heavy chain that were accessible to solvent but not to larger molecules. Site-directed mutagenesis was used to substitute cysteine residues at these positions in the heavy chain of a mouse/human chimaeric version of the tumour-binding monoclonal antibody, B72.3. Expression of the modified antibody genes in mammalian cells yielded correctly assembled proteins that had thiol groups in pre-determined positions and showed no loss of antigen-binding activity. One of the mutants was used to demonstrate the site-specific attachment of a radio-iodinated ligand to the chimaeric B72.3 antibody.  相似文献   

19.
Monoclonal antibodies of predefined specificity have been purified and crystallized as single components or complexed with their specific antigens. The intersegmental flexibility of antibody molecules has imposed the strategy of attempting to crystallize their Fab fragments separately. Intrasegmental mobility in Fabs has rarely been an obstacle to their crystallization. The immune system, however, provides a large functional and structural diversity of antibody molecules suitable for crystallization and X-ray diffraction studies.  相似文献   

20.
High-resolution structures of liganded and unliganded antibody molecules were analyzed in terms of the interaction between the antibody with ligand, between the residues in the contact between the variable domains, and between the framework and the complementarity-determining regions of the antibody. The solvent accessibilities of the residues in the variable domains were also analyzed. The structural information is useful in the engineering of antibodies for therapeutic and other purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号