首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin stimulates autophosphorylation of the insulin receptor on multiple tyrosines in three domains: tyrosines 1316 and 1322 in the C-terminal tail, 1146, 1150 and 1151 in the tyrosine-1150 domain, and possibly 953, 960 or 972 in the juxtamembrane domain. In the present work the sequence of dephosphorylation of the various autophosphorylation sites by particulate and cytosolic preparations of phosphotyrosyl-protein phosphatase from rat liver was studied with autophosphorylated human placental insulin receptor as substrate. Both phosphatase preparations elicited a broadly similar pattern of dephosphorylation. The tyrosine-1150 domain in triphosphorylated form was found to be exquisitely sensitive to dephosphorylation, and was dephosphorylated 3-10-fold faster than the di- and monophosphorylated forms of the tyrosine-1150 domain or phosphorylation sites in other domains. The major route for dephosphorylation of the triphosphorylated tyrosine-1150 domain involved dephosphorylation of one of the phosphotyrosyl pair, 1150/1151, followed by phosphotyrosyl 1146 to generate a species monophosphorylated mainly (greater than 80%) at tyrosine 1150 or 1151. Insulin receptors monophosphorylated in the tyrosine-1150 domain disappeared slowly, and overall the other domains were completely dephosphorylated faster than the tyrosine-1150 domain. Dephosphorylation of the diphosphorylated C-terminal domain yielded insulin receptor in which the domain was singly phosphorylated at tyrosine 1322. Triphosphorylation of the insulin receptor in the tyrosine-1150 domain appears important in activating the receptor tyrosine kinase to phosphorylate other proteins. The extreme sensitivity of the triphosphorylated form of the tyrosine-1150 domain to dephosphorylation may thus be important in terminating or regulating insulin-receptor tyrosine kinase action and insulin signalling.  相似文献   

2.
The regulation of kinase activity associated with insulin receptor by phosphorylation and dephosphorylation has been examined using partially purified receptor immobilized on insulin-agarose. The immobilized receptor preparation exhibits predominately tyrosine but also serine and threonine kinase activities toward insulin receptor beta subunit and exogenous histone. Phosphorylation of the insulin receptor preparation with increasing concentrations of unlabeled ATP, followed by washing to remove the unreacted ATP, results in a progressive activation of the receptor kinase activity when assayed in the presence of histone and [gamma-32P]ATP. A maximal 4-fold activation is achieved by prior incubation of receptor with concentrations of ATP approaching 1 mM. High pressure liquid chromatographic analysis of tryptic hydrolysates of the 32P-labeled insulin receptor beta subunit reveals three domains of phosphorylation (designated peaks 1, 2, and 3). Phosphotyrosine and phosphoserine residues are present in these three domains while peak 2 contains phosphothreonine as well. Thus, at least seven sites are available for phosphorylation on the beta subunit of the insulin receptor. Incubation of the phosphorylated insulin receptor with alkaline phosphatase at 15 degrees C results in the selective dephosphorylation of the phosphotyrosine residues on the beta subunit of the receptor while the phosphoserine and phosphothreonine contents are not affected. The dephosphorylation of the receptor is accompanied by a marked 65% inhibition of the receptor kinase activity. Almost 90% of the decrease in [32P]phosphate content of the receptor after alkaline phosphatase treatment is accounted for by a decrease in phosphotyrosine content in peak 2, while very small decreases are observed in peaks 1 and 3, respectively. These results demonstrate that the extent of phosphorylation of tyrosine residues in receptor domain 2 closely parallels the receptor kinase activity state, suggesting phosphorylation of this domain may play a key role in regulating the insulin receptor tyrosine kinase.  相似文献   

3.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

4.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

5.
Following insulin administration to intact rats, the insulin receptor kinase activity of subsequently isolated cell fractions was significantly augmented. Of interest was the observation that the endosomal insulin receptor tyrosine kinase displayed four- to six-fold greater autophosphorylation activity than that of plasma membrane. Surprisingly, the endosomal insulin receptor tyrosine kinase displayed a decrease in beta-subunit phosphotyrosine content compared with that seen in the plasma membrane. These observations prompted the suggestion that insulin receptor tyrosine kinase phosphotyrosine dephosphorylation mediated by an endosome-specific phosphotyrosine phosphatase(s) yields activation of the endosomal insulin receptor tyrosine kinase. In a previous study we examined the effect of subsaturating doses of injected insulin. In this work we evaluated insulin receptor tyrosine kinase activity and phosphotyrosine content in plasma membrane and endosomes after a receptor-saturating pharmacological dose of insulin (150 micrograms/100 g body weight). At this dose the phosphotyrosine content per receptor was reduced compared with that seen earlier at insulin doses of 1.5 and 15 micrograms/100 g body weight. Endosomal insulin receptor tyrosine kinase was greater than that seen at the lower nonsaturating insulin doses. Furthermore, endosomal insulin receptor tyrosine kinase activity exceeded that of the plasma membrane, despite retaining about the same phosphotyrosine content per receptor. These data are consistent with the view that insulin receptor tyrosine kinase activity may be regulated by a particular pattern of phosphotyrosine content on the beta-subunit wherein both activating and inhibitory phosphotyrosine residues play a role.  相似文献   

6.
A number of protein-tyrosine phosphatase(s) (PTPases) have been shown to dephosphorylate the insulin receptor in vitro; however, it is not known whether any individual PTPase has specificity for certain phosphotyrosine residues of the receptor that regulate its intrinsic tyrosine kinase activity. We evaluated the deactivation of the insulin receptor kinase by three candidate enzymes that are expressed in insulin-sensitive rat tissues, including the receptor-like PTPases LAR and LRP, and the intracellular enzyme, PTPase1B. Purified insulin receptors were activated by insulin and receptor dephosphorylation, and kinase activity was quantitated after incubation with recombinant PTPases from an Escherichia coli expression system. When related to the level of overall receptor dephosphorylation, LAR deactivated the receptor kinase 3.1 and 2.1 times more rapidly than either PTPase1B or LRP, respectively (p less than 0.03). To assess whether these effects were associated with preferential dephosphorylation of the regulatory (Tyr-1150) domain of the receptor beta-subunit, we performed tryptic mapping of the insulin receptor beta-subunit after dephosphorylation by PTPases. Relative to the rate of initial loss of 32P from receptor C-terminal sites, LAR dephosphorylated the Tris-phosphorylated Tyr-1150 domain 3.5 and 3.7 times more rapidly than either PTPase1B or LRP, respectively (p less than 0.01). The accelerated deactivation of the insulin receptor kinase by LAR and its relative preference for regulatory phosphotyrosine residues further support a potential role for this transmembrane PTPase in the physiological regulation of insulin receptors in intact cells.  相似文献   

7.
Most receptor-like, transmembrane protein tyrosine phosphatases (PTPases), such as CD45 and the leukocyte common antigen-related (LAR) molecule, have two tandemly repeated PTPase domains in the cytoplasmic segment. The role of each PTPase domain in mediating PTPase activity remains unclear; however, it has been proposed that PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity, would regulate substrate specificity. In this paper, we examine the function of each PTPase domain of LAR in vivo using a potential physiological substrate, namely insulin receptor, and LAR mutant proteins in which the conserved cysteine residue was changed to a serine residue in the active site of either or both PTPase domains. LAR associated with and preferentially dephosphorylated the insulin receptor that was tyrosine phosphorylated by insulin stimulation. Its association was mediated by PTPase domain 2, because the mutation of Cys-1813 to Ser in domain 2 resulted in weakening of the association. The Cys-1522 to Ser mutant protein, which is defective in the LAR PTPase domain 1 catalytic site, was tightly associated with tyrosine-phosphorylated insulin receptor, but failed to dephosphorylate it, indicating that LAR PTPase domain 1 is critical for dephosphorylation of tyrosine-phosphorylated insulin receptor. This hypothesis was further confirmed by using LAR mutants in which either PTPase domain 1 or domain 2 was deleted. Moreover, the association of the extracellular domains of both LAR and insulin receptor was supported by using the LAR mutant protein without the two PTPase domains. LAR was phosphorylated by insulin receptor tyrosine kinase and autodephosphorylated by the catalytic activity of the PTPase domain 1. These results indicate that each domain of LAR plays distinct functional roles through phosphorylation and dephosphorylation in vivo.  相似文献   

8.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

9.
The receptor protein tyrosine phosphatase alpha (PTPα) is involved in the regulation of tyrosine kinases like the Src kinase and the insulin receptor. As with other PTPs, its function is determined by alternative splicing, dimerisation, phosphorylation and proteolytical processing. PTPα is cleaved by calpain in its intracellular domain, which decreases its potential to dephosphorylate Src kinase. Here, we demonstrate that PTPα is also processed in the extracellular domain. Extracellular processing was exclusively found for a splice variant containing an extra nine amino acid insert three residues amino-terminal from the transmembrane domain. Processing was sensitive to the metalloprotease-inhibitor Batimastat, and CHO-M2 cells lacking a disintegrin and metalloproteinase 17 (ADAM17; tumor-necrosis-factor α converting enzyme) activity were not able to cleave PTPα. After transient overexpression of ADAM17 and PTPα in these cells, processing was restored, proving that ADAM17 is involved in this process. Further characterization of the consequences of processing revealed that dephosphorylation of the insulin receptor or activation of Src was not affected but focus formation was reduced. We conclude that extracellular proteolytic processing is a novel mechanism for PTPα regulation.  相似文献   

10.
An autophosphorylation site in the activated insulin receptor tyrosine kinase domain has three tyrosines phosphorylated when fully activated. To begin to examine recognition of triphosphotyrosyl sites by protein tyrosine phosphatases in possible control of signal transduction a triphosphotyrosyl dodecapeptide TRDIpYETDpYpYRK corresponding to residues 1,142-1,153 of the insulin receptor was prepared and incubated with the 40-kDa catalytic domain of the human PTPase LAR. To assess regioselectivity of recognition, the three diphosphotyrosyl regioisomers, and the three monophosphotyrosyl regioisomers were prepared and assayed. All seven peptides were PTPase substrates. To identify any preferences in dephosphorylation at pY5, pY9, or pY10, 1H-NMR analyses were conducted during enzyme incubations and distinguishing fingerprint regions determined for each of the seven phosphotyrosyl peptides. LAR PTPase shows strong preference for dephosphorylation first at pY5 (at tri-, di-, and monophosphotyrosyl levels). Initially this regioselectivity gives the Y5(pY9)(pY10) diphospho regioisomer, followed by equal dephosphorylation at pY9 or pY10 to give the corresponding monophosphoryl species on the way to fully dephosphorylated product. The NMR methodology is applicable to other peptides with multiple sites of phosphorylation that undergo attack by any phosphatase.  相似文献   

11.
Two highly sensitive, nonradiolabeled assays for protein phosphotyrosine phosphatase (PTPase) have been developed. The first assay is based on the use of chemically synthesised phosphotyrosine-containing peptides that can be separated from the dephosphorylated peptide products by HPLC. In this assay, partially purified placental PTPase 1B dephosphorylated three dodecaphosphopeptides (corresponding to insulin receptor autophosphorylation sites at positions PY1146, PY1150, and PY1151) with approximately equal affinity (Km 1.3-2.5 microM), indicating that PTPase 1B shows no distinct preference for the site of dephosphorylation in these peptides. The second assay employs either a phosphopeptide or an autophosphorylated tyrosine kinase domain immobolized on microtiter plate wells. After reaction with PTPase, the remaining unconverted phosphosubstrate is detected in an ELISA using anti-phosphotyrosine antibodies. The latter assay was used to monitor PTPase activity during purification procedures and for characterizing PTPases. Modulation of PTPase activity by orthovanadate, heparin, Zn2+, and EDTA gave similar results in both assays. The immobilized autophosphorylated IR tyrosine kinase domain was a poor substrate for bovine liver alkaline phosphatase and seminal fluid acid phosphatase. The second assay also offers the potential for comparing PTPase activity toward several autophosphorylated tyrosine kinase domains, including those of the insulin, epidermal growth factor, and platelet-derived growth factor receptors.  相似文献   

12.
A polypeptide from a tryptic digest of bovine serum albumin potentiates glucose oxidation stimulated by insulin in isolated rat adipocytes. We studied whether this effect is related to a modification of the insulin receptor kinase. In a solubilized rat adipocytes receptor system, the peptide caused dose-dependent inhibition of the stimulation by insulin of phosphorylation of the 95,000 dalton subunit of insulin receptor. The peptide also inhibited stimulation by vanadate of tyrosine autophosphorylation of the beta subunit of the receptor, though it enhanced vanadate-stimulated glucose oxidation. During the phosphorylation reaction, no phosphorylated forms of the peptide could be detected. The peptide had no effect on dephosphorylation of the phosphorylated beta subunit of the insulin receptor. These results strongly suggest that the inhibition of phosphorylation by the peptide is due not to either simple substrate competition or activation of phosphoprotein phosphatase, but to specific inhibition of tyrosine-specific protein kinase.  相似文献   

13.
The present study demonstrates negative intracellular cross-talk between angiotensin II type 2 (AT2) and insulin receptors. AT2 receptor stimulation leads to inhibition of insulin-induced extracellular signal-regulated protein kinase (ERK2) activity and cell proliferation in transfected Chinese hamster ovary (CHO-hAT2) cells. We show that AT2 receptor interferes at the initial step of insulin signaling cascade, by impairing tyrosine phosphorylation of the insulin receptor (IR) beta-chain. AT2-mediated inhibition of IR phosphorylation is insensitive to pertussis toxin and is also detected in neuroblastoma N1E-115 and pancreatic acinar AR42J cells that express endogenous receptors. We present evidence that AT2 receptor inhibits the autophosphorylating tyrosine kinase activity of IR, with no significant effect on insulin binding properties. AT2-mediated inactivation of IR does not mainly involve tyrosine dephosphorylation by vanadate-sensitive tyrosine phosphatases nor serine/threonine phosphorylation by protein kinase C. As a consequence of IR inactivation, AT2 receptor inhibits tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and signal-regulatory protein (SIRPalpha1) and prevents subsequent association of both IRS-1 and SIRPalpha1 with Src homology 2 (SH2)-containing tyrosine phosphatase SHP-2. Our results thus demonstrate functional trans-inactivation of IR kinase by G protein-coupled AT2 receptor, illustrating a novel mode of negative communication between two families of membrane receptors.  相似文献   

14.
The dynamics of interaction of the insulin receptor (IR) with Grb14 was monitored, in real time, in living human embryonic kidney cells, using bioluminescence resonance energy transfer (BRET). We observed that insulin rapidly and dose-dependently stimulated this interaction. We also observed that insulin-induced BRET between the IR and protein tyrosine phosphatase 1B (PTP1B) was markedly reduced by Grb14, suggesting that Grb14 regulated this interaction in living cells. Using site-specific antibodies against phosphorylated tyrosines of the IR, we showed that Grb14 protected the three tyrosines of the kinase loop from dephosphorylation by PTP1B, while favouring dephosphorylation of tyrosine 972. This resulted in decreased IRS-1 binding to the IR and decreased activation of the extracellular signal-regulated kinase pathway. Increased Grb14 expression in human liver-derived HuH7 cells also seemed to specifically decrease the phosphorylation of Y972. Our work therefore suggests that Grb14 may regulate signalling through the IR by controlling its tyrosine dephosphorylation in a site-specific manner.  相似文献   

15.
Greene MW  Garofalo RS 《Biochemistry》2002,41(22):7082-7091
Insulin receptor substrates (IRS) 1 and 2 are phosphorylated on serine/threonine (Ser/Thr) residues in quiescent cells (basal phosphorylation), and phosphorylation on both Ser/Thr and tyrosine residues is increased upon insulin stimulation. To determine whether basal Ser/Thr phosphorylation of IRS proteins influences insulin receptor catalyzed tyrosine phosphorylation, recombinant FLAG epitope-tagged IRS-1 (F-IRS-1) and IRS-2 (F-IRS-2) were expressed, purified, and subjected to both dephosphorylation and hyperphosphorylation prior to phosphorylation by the insulin receptor kinase. As expected, hyperphosphorylation of F-IRS-1 and F-IRS-2 by GSK3beta decreased their subsequent phosphorylation on tyrosine residues by the insulin receptor. Surprisingly, however, dephosphorylation of the basal Ser/Thr phosphorylation sites impaired subsequent phosphorylation on tyrosine, suggesting that basal Ser/Thr phosphorylation of F-IRS-1 and F-IRS-2 plays a positive role in phosphorylation by the insulin receptor tyrosine kinase. Dephosphorylation of basal Ser/Thr sites on F-IRS-1 also significantly reduced tyrosine phosphorylation by the IGF-1 receptor. However, dephosphorylation of F-IRS-2 significantly increased phosphorylation by the IGF-1 receptor, suggesting that basal phosphorylation of IRS-2 has divergent effects on its interaction with the insulin and IGF-1 receptors. Phosphorylation of endogenous IRS-1 and IRS-2 from 3T3-L1 adipocytes was modulated in a similar manner. IRS-1 and IRS-2 from serum-fed cells were hyperphosphorylated, and dephosphorylation induced either by serum deprivation or by alkaline phosphatase treatment after immunoprecipitation led to an increase in tyrosine phosphorylation by the insulin receptor. Dephosphorylation of IRS-1 and IRS-2 immunoprecipitated from serum-deprived cells, however, resulted in inhibition of tyrosine phosphorylation by the insulin receptor. These data suggest that Ser/Thr phosphorylation can have both a positive and a negative regulatory role on tyrosine phosphorylation of IRS-1 and IRS-2 by insulin and IGF-1 receptors.  相似文献   

16.
In response to insulin, tyrosine kinase activity of the insulin receptor is stimulated, leading to autophosphorylation and tyrosine phosphorylation of proteins including insulin receptor subunit (IRS)-1, IRS-2, and Shc. Phosphorylation of these proteins leads to activation of downstream events that mediate insulin action. Insulin receptor kinase activity is requisite for the biological effects of insulin, and understanding regulation of insulin receptor phosphorylation and kinase activity is essential to understanding insulin action. Receptor tyrosine kinase activity may be altered by direct changes in tyrosine kinase activity, itself, or by dephosphorylation of the insulin receptor by protein-tyrosine phosphatases. After 1 min of insulin stimulation, the insulin receptor was tyrosine phosphorylated 8-fold more and Shc was phosphorylated 50% less in 32D cells containing both IRS-1 and insulin receptors (32D/IR+IRS-1) than in 32D cells containing only insulin receptors (32D/IR), insulin receptors and IRS-2 (32D/IR+IRS-2), or insulin receptors and a form of IRS-1 that cannot be phosphorylated on tyrosine residues (32D/IR+IRS-1F18). Therefore, IRS-1 and IRS-2 appeared to have different effects on insulin receptor phosphorylation and downstream signaling. Preincubation of cells with pervanadate greatly decreased protein-tyrosine phosphatase activity in all four cell lines. After pervanadate treatment, tyrosine phosphorylation of insulin receptors in insulin-treated 32D/IR, 32D/ IR+IRS-2, and 32D/IR+IRS-1F18 cells was markedly increased, but pervanadate had no effect on insulin receptor phosphorylation in 32D/IR+IRS-1 cells. The presence of tyrosine-phosphorylated IRS-1 appears to increase insulin receptor tyrosine phosphorylation and potentially tyrosine kinase activity via inhibition of protein-tyrosine phosphatase(s). This effect of IRS-1 on insulin receptor phosphorylation is unique to IRS-1, as IRS-2 had no effect on insulin receptor tyrosine phosphorylation. Therefore, IRS-1 and IRS-2 appear to function differently in their effects on signaling downstream of the insulin receptor. IRS-1 may play a major role in regulating insulin receptor phosphorylation and enhancing downstream signaling after insulin stimulation.  相似文献   

17.
Ligand binding to the platelet-derived growth factor (PDGF) beta-receptor leads to increased receptor tyrosine phosphorylation as a consequence of dimerization-induced activation of the intrinsic receptor tyrosine kinase activity. In this study we asked whether ligand-stimulated PDGF beta-receptor tyrosine phosphorylation, to some extent, also involved reduced susceptibility to tyrosine dephosphorylation. To investigate this possibility we compared the sensitivity of ligand-stimulated and non-stimulated forms of tyrosine-phosphorylated PDGF beta-receptors to dephosphorylation using various preparations containing protein-tyrosine phosphatase activity. Ligand-stimulated or unstimulated tyrosine-phosphorylated receptors were obtained after incubation of cells with pervanadate only or pervanadate, together with PDGF-BB, respectively. Dephosphorylation of receptors immobilized on wheat germ agglutinin-Sepharose, as well as of receptors in intact cell membranes, was investigated under conditions when rephosphorylation did not occur. As compared with unstimulated receptors the ligand-stimulated PDGF beta-receptors showed about 10-fold reduced sensitivity to dephosphorylation by cell membranes, a recombinant form of the catalytic domain of density-enhanced phosphatase-1, or recombinant protein-tyrosine phosphatase 1B. We conclude that ligand-stimulated forms of the PDGF beta-receptor display a reduced susceptibility to dephosphorylation. Our findings suggest a novel mechanism whereby ligand stimulation of PDGF beta-receptor, and possibly other tyrosine kinase receptors, leads to a net increase in receptor tyrosine phosphorylation.  相似文献   

18.
Epidermal growth factor receptor (EGFR) signaling is initiated by ligand binding followed by homodimerization and rapid receptor autophosphorylation. Monitoring EGFR phosphorylation was achieved by measuring translocation and binding of an enhanced yellow fluorescent protein (EYFP)-labeled phosphotyrosine-binding domain (PTB) to enhanced cyan fluorescent protein (ECFP)-tagged EGFR using fluorescence lifetime imaging microscopy or sensitized emission measurements. To simplify dynamic phosphorylation pattern measurements in cells, FLAME, a ratiometric sensor containing both EGFR-ECFP and PTB-EYFP in one molecule, was designed and examined in COS7 cells. Epidermal growth factor (EGF) treatment demonstrated rapid and reversible changes in the EYFP/ECFP fluorescence emission ratios, due to binding of the PTB domain to its consensus binding sites upon phosphorylation at the cell periphery, whereas perinuclear regions failed to respond to EGF but were responsive to tyrosine kinase inhibition. Long-term EGF treatment resulted in accumulation of dephosphorylated receptor in the perinuclear region due to active dephosphorylation occurring at intracellular sites. This indicates that the sensor closely approaches the true dynamics of tyrosine kinase autophosphorylation and dephosphorylation. Phosphatase inhibition by pervanadate resulted in an irreversible response in all cellular compartments. These data show that EGFR is under tonic phosphatase suppression maintaining the receptor in an unphosphorylated (silent) state and is dephosphorylated at endomembranes after ligand-mediated endocytosis.  相似文献   

19.
The phosphorylation characteristics of insulin receptor from control and insulin-treated rat H-35 hepatoma cells 32P-labeled to equilibrium have been documented. The 32P-labeled insulin receptor is isolated by immunoprecipitation with patient-derived insulin receptor antibodies in the presence of phosphatase and protease inhibitors to preserve the native phosphorylation and structural characteristics of the receptor. The unstimulated insulin receptor contains predominantly [32P] phosphoserine and trace amounts of [32P]phosphothreonine in its beta subunit. In response to insulin, the insulin receptor beta subunit exhibits marked tyrosine phosphorylation and a 2-fold increase in total [32P]phosphoserine contents. High pressure liquid chromatography of the tryptic hydrolysates of the 32P-labeled receptor beta subunit from quiescent cells results in the resolution of up to 9 fractions containing [32P]phosphoserine. The insulin-stimulated tyrosine phosphorylation is concentrated in two of these receptor phosphopeptide fractions, whereas the increase in [32P]phosphoserine content is scattered in low abundance over all receptor tryptic fractions. Insulin receptors affinity-purified by lectin- and insulin-agarose chromatographies from insulin-treated, 32P-labeled cells exhibit a 22-fold increase in the Vmax of receptor tyrosine kinase activity toward histone when compared to controls. The elevated kinase activity of the insulin receptor derived from insulin-treated cells is not due to the presence of hormone bound to the receptor because the receptor kinase activity is assayed while immobilized on insulin-agarose. Furthermore, the insulin-activated receptor kinase activity is reversed following dephosphorylation of the receptor beta subunit with alkaline phosphatase in vitro. The correlation between the insulin-stimulated site specific tyrosine phosphorylation on receptor beta subunit and the elevation of receptor tyrosine kinase activity strongly suggests that the insulin receptor kinase is activated by hormone-stimulated autophosphorylation on tyrosine residues in intact cells, as previously demonstrated for the purified receptor.  相似文献   

20.
EphA2 receptor tyrosine kinase and the human cytoplasmic protein tyrosine phosphatase (HCPTP) are overexpressed in a number of epithelial cancers. Overexpressed EphA2 in these cancers shows a significant decrease in phosphotyrosine content which results in suppression of receptor signaling and endocytosis and an increase in metastatic potential. The decreased phosphotyrosine content of EphA2 has been associated with decreased contact with its ligand, ephrin A1 and dephosphorylation by HCPTP. Potential specificity of the two HCPTP variants for tyrosines on EphA2 has not been investigated. We have used a mass spectrometry assay to measure relative rates of dephosphorylation for the two HCPTP variants at phosphotyrosine sites associated with control of the EphA2 kinase activity or interaction with downstream targets. Our results suggest that although both variants dephosphorylate the EphA2 receptor, the rate and specificity of dephosphorylation for specific tyrosines are different for HCPTP-A and HCPTP-B. The SAM domain tyrosine Y960 which has been implicated in downstream PI3K signaling is dephosphorylated exclusively by HCPTP-B. The activation loop tyrosine (Y772) which directly controls kinase activity is dephosphorylated about six times faster by HCPTP-A. In contrast, the juxtamembrane tyrosines (Y575, Y588 and Y594) which are implicated in both control of kinase activity and downstream signaling are dephosphorylated by both variants with similar rates. This difference in preference for dephosphorylation sites on EphA2 not only illuminates the different roles of the two variants of the phosphatase in EphA2 signaling, but also explains why both HCPTP variants are highly conserved in most mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号