首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like effects of wax bean agglutinin in rat adipocytes   总被引:2,自引:0,他引:2  
Wax bean agglutinin (WBA) was found to mimic the activities of insulin in mediating glucose oxidation and antilipolysis. In contrast, soybean and peanut agglutinins do not exert any of these activities. Unlike concanavalin A and wheat germ agglutinin that were reported previously to exhibit insulin-like activites, WBA neither enhances nor competes with the [125I]insulin binding at relatively high concentrations. Moreover, mild trypsinization of adipocytes, a treatment which greatly diminishes the binding and bioactivity of insulin in fat cells, only slightly affects glucose oxidation induced by WBA. ED50 values for WBA mediated glucose oxidation and antilipolysis are 9.3 μg and 40.0 μg, respectively, compared with the nearly identical concentrations required for 50% of maximal effect of both glucose oxidation and antilipolysis, mediated by wheat germ agglutinin. The present studies suggest that these two activities may be triggered by WBA via surface glycoproteins that are distinct from the binding site of insulin.  相似文献   

2.
The observation that concanavalian A can inhibit milk secretion was evaluated in an in vitro system employing minced mammary gland or isolated alveoli from lactating rats. Release of milk constituents (casein, lactose and fat globules) into the medium in the presence and absence of concanavalin A was measured during 1 or 2 h incubations. The effect of concanavalin A on glucose uptake and CO2 production of the minced tissued was also studied. Concanavalin A suppressed release of milk components at a concentration as low as 80 μg/ml of medium. Respiration of minced mammary tissue in the presence of concanavalin A (100 μg/ml of medium) was essentially the same as that of the control. The data are evidence that concanavalin A acts directly on the mammary cell in suppressing milk secretion and that the effect is not due to cytotoxicity.  相似文献   

3.
The agglutination responses of three Drosophila cell lines to concanavalin A and wheat germ agglutinin have been examined. Although the cell lines were originally derived from late embryonic stages of the Ore-R strain of Drosophila melanogaster, they show quantitative differences in lectin-induced agglutination. Line 1 cells were least agglutinable with both lectins. All three cell lines reached maximum agglutination with concanavalin A concentrations at 25 μg/ml, but the agglutination response to wheat germ agglutinin was biphasic such that an initial rapid increase in agglutination with concentrations up to 25 μg/ml was followed by slower agglutination above this concentration. Cells of lines 1 and 2 from ten-day old cultures exhibited greater lectin-induced agglutination than cells from three-day old cultures. Age-dependent differences were not found for line 3 cells which gave maximum agglutination responses in both young and old cultures. Cell agglutination by concanavalin A was almost completely inhibited by pretreatment of the lectin with methyl-α-d-mannopyranoside, but preincubation of wheat germ agglutinin with N-acetyl-d-glucosamine caused only partial blockage. Lectin-induced agglutination was not reversible by treatment with the monosaccharide inhibitors. These observations have been discussed with reference to the origin of the three cell lines and their cell surface properties.  相似文献   

4.
(1) In order to assess the possible role of 3′,5′-(cyclic)adenosine monophosphate (cAMP) in the control of glucose transport, the effect of the nucleotide or agents known to increase its intracellular concentration on sugar transport or 45Ca2+ washout were characterized in epididymal fat pads, free fat cells and soleus muscles of the rat. (2) When added to the incubation medium, cAMP (0.1–2.0 mM) stimulated 3-O-[14C]methylglucose washout from fat pads. This effect was abolished by cytochalasin B, and additive to that induced by submaximal (10–25 μU/ml), but not by supramaximal (10 mU/ml) concentrations of insulin. (3) cAMP (2 mM) stimulated the conversion of [U-14C]glucose into CO2 and triacylglycerols. This effect was additive to that of insulin (100 μU/ml). (4) ACTH, glucagon, adrenaline, noradrenaline and salbutamol, which are all known to increase the cAMP content of adipose tissue, stimulated the washout of 3-O-[14C]methylglucose and 45Ca2+ from preloaded fat pads. The fractional losses of the two isotopes were significantly correlated (P < 0.001, r = 0.73). (5) In free fat cells, adrenaline (10−6 M) and salbutamol (10−5 M) stimulated the uptake of 3-O-[14C]methylglucose, and salbutamol (10−5 M) did not interfere with the stimulating effect of insulin (25 μU/ml) on sugar uptake. (6) In rat soleus muscles, adrenaline and salbutamol produced a dose-dependent stimulation of the washout of 3-O-[14C]methylglucose and 45Ca2+. The effect of adrenaline on sugar efflux was abolished by propranolol. (7) It is concluded that the activation of the glucose transport system by insulin is unlikely to be mediated by a drop in the cellular concentration of cAMP. An increase in cAMP brought about by β-adrenoceptor agonists or lipolytic hormones may induce a mobilization of calcium ions from cellular pools into the cytoplasm, which in turn leads to the activation of the glucose transport system demonstrated in the present as well as in several earlier studies.  相似文献   

5.
Effects of trypsin treatment on insulin and concanavalin A binding to, and glucose and proline transport in, dissociated R3230AC mammary adenocarcinoma cells were examined. Reduction of binding of 125I-labelled insulin was dependent on the amount of trypsin used, the temperature and the time of the incubation period. Under conditions that reduced insulin binding by greater than 75%, transport of glucose and proline was reduced by less than 15%. Scatchard analysis of insulin binding after trypsin treatment yielded slopes similar to those from cells not exposed to trypsin, assuming either two classes of receptors or an average affinity, K?e. Dissociation of bound insulin from untreated or trypsin-treated cells was enhanced by addition of excess unlabelled ligand. Insulin added in vitro, which decreased glucose transport in untreated cells, produced a decrease in glucose transport in cells treated with trypsin for 5 min (insulin binding was decreased 35%), but not in cells treated for 45 min (insulin binding was decreased 90%). Binding of the plant lectin concanavalin A was also reduced by trypsin treatment, but to a lesser extent and with a different time-course than for insulin. Scatchard analysis of the binding of concanavalin A in untreated and trypsin-treated cells yielded comparable values for Kd. The insulinomimetic actions of concanavalin A on glucose transport were abolished after brief exposure to trypsin. Pre-treatment of cells with concanavalin A reduced insulin binding and partially protected insulin receptors from trypsin digestion, but the inability to remove all of the concanavalin A precluded its use as a method to protect insulin receptors. Thus, in this rat mammary tumor, the number, but not the affinity or functional activity, of insulin receptors can be reduced by trypsin treatment without significant effects on glucose or A system amino acid transport.  相似文献   

6.
d-glyceraldehyde stimulated insulin secretion from isolated rat pancreatic islets in static incubation and perifusion systems. At low concentrations (2–4 mM) d-glyceraldehyde was a more potent secretagogue than glucose. The insulinotropic action of 15 mM d-glyceraldehyde was not affected by d-mannoheptulose, was potentiated by cytochalasin B (5 μg/ml) and theophylline (4 mM), and was inhibited by both adrenalin (2 μM) and somatostatin (10 μg/ml). D-glyceraldehyde at a concentration of 1.5 mM produced a 10-fold increase of l-[4,5-3 H]leucine incorporation into proinsulin and insulin without a significant increase into other islet proteins. Glucose at 1.5 mM did not stimulate proinsulin biosynthesis. d-Glyceraldehyde at concentrations higher than 1.5 mM, in marked contrast to glucose, progressively inhibited incorporation of labelled leucine into proinsulin + insulin and other islet proteins. d-glyceraldehyde also inhibited the oxidation of glucose. l-Glyceraldehyde did not stimulate proinsulin biosynthesis and had less effect than the d-isomer on insulin release and glucose oxidation. The results strongly suggest that metabolites below d-glyceraldehyde-3-P are signals for insulin biosynthesisand release. Interaction of d-glyceraldehyde with a “membrane receptor” cannot, however, be excluded with certainty.  相似文献   

7.
We have studied the interaction of five lectins differing in their sugar specificity, with the surface of clonal cell lines derived from transplantable murine teratocarcinoma. The results show that the differentiation from primitive embryonal carcinoma cells into parietal yolk sac cells is accompanied by changes in cell surface saccharides. These changes consist of a marked decrease in the total number of binding sites for the l-fucose-specific lectin of Lotus tetragonolobus and a large increase in the total number of binding sites for wax bean agglutinin. It is suggested that these differences can be used as markers in the study of this early embryonic differentiation. No agglutination of primitive embryonal carcinoma cells or of parietal yolk sac cells by low concentrations (10 μg/ml) of concanavalin A, soybean agglutinin or the fucose binding proteins was observed.  相似文献   

8.
We have investigated the relationship of concanavalin. A binding to the cell surface of normal and transformed cells and the subsequent agglutination of the transformed cells. At room temperature almost no differences could be detected in agglutinin binding between transformed and untransformed cells. At 0°C, however, where endocytosis was negligible, the transformed cells bound three times more agglutinin. However, transformed cells and trypsin-treated normal cells do not agglutinate at 0°C although the amounts of agglutinin bound at 0°C are sufficient to permit agglutination when such cells are shifted up to room temperature. Both transformed and trypsin-treated normal cells show a marked increase in agglutination at 15°C as compared to agglutination at 0°C. From this, as well as the observation that mild glutaraldehyde fixation of the cell surface inhibited agglutination but not agglutinin binding, it was concluded that concanavalin A-mediated cell agglutination requires free movement of the agglutinin receptor sites within the plane of the cell surface.  相似文献   

9.
Prolonged exposure (> 6 h) of cultured granulosa cells to Prostaglandin E2 (PGE2; 1 μg/ml) led to a near-total loss of the cyclic AMP response to subsequent addition of fresh hormone. Pre-treatment of the cells with concanavalin A (ConA; 2.0 μg/ml) for 1 h blocked the desensitizing action of PGE2, so that the decline in the response was reduced by 60% with the hormone at high concentration (1.0 μg/ml); a full response was preserved at submaximal concentration of PGE2 (0.1 – 0.3μg/ml). Other lectins (succinyl Con a, peanut agglutinin and, to a lesser extent, phytohemagglutinin and wheat germ agglutinin) had a stabilizing effect similar to that of Con A. Addition of alpha-methyl-mannoside either with Con A or various times following the addition of Con A to the cells prevented the protective effect of Con A. Concomitant treatment with colchicine or cytochalasin B abolished the ability of Con A to prevent PGE2-induced desensitization.  相似文献   

10.
The possible role of the pentose phosphate shunt in insulin release was investigated in vitro with collagenase isolated pancreatic islets of rats. Parameters measured were insulin released into the medium and measured by an immunoassay and formation of 14CO2 from glucose labeled either in the C-1 or C-6 position. The in vitro effect of the following substances was studied:
1. 1. 6-Aminonicotinamide, an antimetabolite in the synthesis of pyridine nucleotides. In islets of animals pretreated with 6-amino nicotinamide 6 h previously and in the presence of 3 mg/ml glucose in the incubation medium, 6-aminonicotinamide markedly reduced oxidation of [1-14C]glucose but did not affect that of glucose labeled in C-6. Concomitantly there was a marked decrease in insulin release. This action of 6-aminonicotinamide did not take place when it was added only to the incubation medium. Pretreatment with 6-aminonicotinamide did not change the insulin concentration of the islets, making it unlikely that it interfered with insulin synthesis. The effect of 6-aminonicotinamide is consistent with partial inhibition of the pentose shunt.
2. 2. Methylene blue: this agent was selected because it is known from studies with red blood cells that it will oxidize NADPH and thus stimulate activity of the pentose shunt. In concentrations of 0.5 and 2 μg/ml, methylene blue markedly stimulated oxidation of [1-14C]glucose but not that of C-6. Simultaneously there was a dose related decrease of insulin released.
3. 3. Pyridine nucleotides: in the absence of glucose only NADPH exhibited a significant effect of insulin release. If glucose (3 mg/ml) was present 1 or 10 mM of NAD+ or NADH exhibited a significant effect, NADP+ or NADPH were less effective. If the pentose shunt was blocked by pretreatment with 6-aminonicotinamide, all 4 pyridine nucleotides stimulated insulin release. Similarly there was an increase in oxidation of [1-14C]glucose, consitent with restimulation of the pentose shunt.
4. 4. Nicotinamide by itself exhibited a small effect; however, it was much less than the one produced by equimolar concentrations of the pyridine nucleotides.
Conclusion: Restricted availability of NADPH either less production or by fast removal leads to a decrease in glucose-induced insulin release. Pyridine nucleotides will restimulate 6-aminonicotinamide blockade insulin release and glucose oxidation by the pentose shunt. Recently it has been proposed by others that the polyol pathway may play a key role in insulin release, our data are consistent with such a hypothesis. Furthermore they do support a major role of the pentose shunt in insulin release.  相似文献   

11.
12.
Rat liver cells isolated by the collagenase-hyaluronidase perfusion method were treated with membrane-impermeable protein reagents (7-diazonium, 1–3-naphthalene disulfonate, diazotized sulfanilic acid, 8-anilino-naphthalene disulfonate), trypsin, phospholipase A, phospholipase C, and phospholipase D. The treated cells were incubated with [1-14C]palmitate and the 14CO2 produced was taken as a measure of fatty acid uptake by the cells. 14CO2 production by the cells was not inhibited after treatments with the membrane-impermeable protein reagents or phospholipase D. Treatments with small amounts of trypsin or phospholipases A or C caused inhibition of CO2 production from tracer amounts of palmitate. The inhibition by trypsin was partially, and that by phospholipase A was fully, reversed by increasing the amount of palmitic acid in the incubation medium. The oxidation of shorter-chain fatty acids such as octanoic acid was not decreased but increased after treating the cells with trypsin or phospholipase A. The membrane-impermeable reagents inhibited the oxidation of palmitate to CO2 by liver cells isolated by mechanical dispersion. These reagents also inhibited the long-chain acyl CoA ligase activity of liver microsomes. From these results it is suggested that the inhibition of CO2 production by intact liver cells from palmitate after enzyme treatments, is due to partial removal or modification of a normal transport component for long-chain fatty acids on the plasma membrane. The possibility of proteins (or lipoproteins) buried below the surface layer of plasma membrane in fatty acid uptake by liver cells is indicated.  相似文献   

13.
Ten lectins, each with a different carbohydrate-binding specificity, have been coupled to tissue culture substrata with carbodiimide [1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide-metho-p-toluene sulfonate] and assayed for their efficacy as substrates for the carbohydrate-specific adhesion of cells dissociated from mouse cerebellum at embryonic Day 13 and postnatal Days 0 and 7. On surfaces treated with concanavalin A, succinyl-concanavalin A, Lens culinaris agglutinin, and wheat germ agglutinin, both embryonic and early postnatal cerebellar cells formed a monolayer. On surfaces coupled with Ricinus communisI agglutinin (120,000 daltons) both embryonic and postnatal cells formed cellular aggregates with extensive fiber outgrowth. On surfaces treated with peanut agglutinin, Dolichos bifloris agglutinin, Wistaria floribunda agglutinin, soybean agglutinin, or Ulex europaeusI agglutinin, embryonic cerebellar cells formed cellular aggregates with a cell viability of 25–35% and little or no fiber outgrowth. Postnatal cerebellar cells, in contrast, formed cellular aggregates with a cell viability of 60–70% and extensive fiber outgrowth. On surfaces treated with Ulex europaeusI agglutinin, cells from postnatal Day 7 formed limited areas of monolayer in addition to cellular aggregates. After 12 hr in vitro the specific attachment of cerebellar cells to lectin-derivatized substrata was inhibited 60–80% by the inclusion of free hapten carbohydrate (50–100 mM) in the growth medium. The addition of soluble concanavalin A or Ricinus communisI agglutinin (100 μg/ml) was toxic. These studies suggest the presence of glycoconjugate-binding sites for concanavalin A, Lens culinaris agglutinin, and wheat germ agglutinin which promote cerebellar cellular adhesion.  相似文献   

14.
The effects of sulfonylureas and a biguanide on membrane-bound low Km cyclic AMP phosphodiesterase and lipolysis were examined in rat fat cells. Pharmacologically active sulfonylureas, such as tolbutamide (10 mM), acetohexamide (10 mM) and glibenclamide (200 μM) activated the phosphodiesterase when incubated with fat cells and suppressed lipolysis induced by isoproterenol. However, neither of these actions was observed in the presence of a pharmacologically inactive sulfonylurea, carboxytolbutamide (10 mM) and a biguanide, buformin (500 μM). Tolbutamide (0.5–10 mM) activated the enzyme, concentration dependently, and this manner of activation appears to coincide with that of the suppressive effect on the lipolysis. The time course of the enzyme activation was similar to that seen with insulin. Km, optimal pH and sensitivity to temperature of the enzyme from tolbutamide-treated cells were the same as those of the enzyme from control and insulin-treated cells. Direct incubation of the enzyme from control cells with tolbutamide did not affect the activity, while as little as 10 μM 3-isobutyl-1-methylxanthine markedly inhibited the enzyme. Tolbutamide continued to activate the enzyme in cells in which insulin receptor had been destroyed by trypsin-pretreatment. These results are compatible with the idea that the enzyme activated by sulfonylurea and that activated by insulin may be the same species of phosphodiesterase and that the antilipolytic action of sulfonylurea may be mediated by the activation of the enzyme which does not occur through the insulin receptor.  相似文献   

15.
The binding of soybean agglutinin to human and rabbit erythrocytes, before and after treatment with trypsin, was reinvestigated with special emphasis on measurements at very low lectin concentrations. This communication presents two features of the binding that are observed only at the low concentrations used. (1) The trypsinized erythrocytes bind more lectin molecules than untreated cells at low concentrations (0.1–1.0 μg/ml), even though the total number of binding sites appears to be the same for both treated and untreated cells. It is suggested that this difference could explain, at least in part, the much higher susceptibility of the trypsin-treated cells to agglutination by soybean agglutinin. (2) At low site occupancy the binding of soybean agglutinin exhibits positive cooperativity, indicating a conformational change in the membrane. Trypsin-treated cells exhibit this effect at much lower lectin concentrations than untreated cells.  相似文献   

16.
Soybean agglutinin interacts with soybean callus cells to increase cell number, cell weight and DNA synthesis, three responses indicative of a mitogenic agent. Cell growth showed maximum response four days following transfer to media containing 1.5 μg/ml soybean agglutinin. The increase in thymidine incorporation induced by soybean agglutinin was partially inhibited by 0.1 mM N-acetyl- -galactosamine (GalNAc), a competitive hapten.  相似文献   

17.
Epimastigotes of Trypanosoma cruzi obtained in culture agglutinate readily with low concentrations of concanavalin A (Con A). Agglutination was linear with time up to 10 min providing that the initial cell density was greater than 1 × 108 cells/ml. Under these conditions, the percentage agglutination was dependent on the Con A concentration. Agglutination was inhibited by α-methyl D-mannoside, α-D-mannose, and α-D-glucose. Pretreatment of cells with trypsin had no effect on the epimastigote agglutinations. Blood forms (trypomastigotes) of T. cruzi did not agglutinate even in the presence of 100 times more Con A. Results suggest differences in membrane structure between blood forms and cultured epimastigotes of T. cruzi. These membrane differences might be related to the different pathogenic properties of both cell forms of T. cruzi.  相似文献   

18.
The agglutination with concanavalin A and wheat germ agglutinin of the established malignant cells, HEp 2, KB, HeLa, TDB-3, HTC and RV 3T3, and of the putatively normal cells, BHK 21, 3T3 and Wi-38 was examined as a function of their saturation densities in culture. A positive correlation between the saturation density of the cell lines and the capacity to agglutinate was demonstrated. Incubation for 15 minutes with 1.25 mg/ml of trypsin converted non-agglutinating and poorly agglutinating cells into agglutinable ones, while leaving the highly agglutinating lines largely unchanged. The magnitude of change in agglutination after trypsin treatment correlated inversely with saturation density. Although the extent of agglutination varied with the saturation density, the agglutinability of a particular line remained relatively unchanged at different cell densities.  相似文献   

19.
Lectins specific for D-mannose (concanavalin A), N-acetyl-D-glucosamine (wheat-germ agglutinin) or D-galactose (Ricinus communis agglutinin I) inhibited insulin binding and activated glucose transport in rat adipocytes [Cherqui, Caron, Capeau & Picard (1982) Mol. Cell. Endocrinol. 28, 627-643]. In the present investigation, the intracellular activities of insulin and lectins on lipogenesis and protein synthesis were studied under conditions where neither agent had an effect on membrane transport processes. (1) When glucose transport was rate-limiting (0.5 mM-glucose), insulin (0.8 ng/ml) and lectins (20 micrograms/ml) increased lipogenesis by 2.4-3-fold. (2) When passive diffusion of glucose was amplified (10 mM-glucose), insulin (0.8 ng/ml) and lectins (20 micrograms/ml) increased lipogenesis by 1.6-1.8-fold even in the presence of 50 microM-cytochalasin B, which completely blocked glucose transport. (3) Insulin (6 ng/ml), concanavalin A and wheat-germ agglutinin (40 micrograms/ml) stimulated the incorporation of L-[U-14C]leucine into fat-cell protein 1.5-fold but did not modify alpha-aminoisobutyric acid uptake or 14C-labelled protein degradation. (4) Peanut and soya-bean agglutinins (specific for O-glycosidically-linked oligosaccharides), known not to alter insulin binding, were ineffective. (5) Lectin effects were dose-dependent and were markedly inhibited by specific monosaccharides (50 mM). (6) Insulin and lectin maximal effects were not additive and were completely abolished by neuraminidase treatment of fat-cells (0.05 unit/ml). These data indicate involvement of surface sialylated glycoproteins of the complex N-linked type in the insulin stimulation of glucose and amino acid intracellular metabolic processes. They suggest, together with our previous results, that the transmission of the insulin signal for both membrane and intracellular effects occurs via glycosylated effector entities of, or closely linked to, the insulin-receptor complex.  相似文献   

20.
Washed cell suspensions of the facultative methylotroph strain IMB-1 grown on methyl bromide (MeBr) were able to consume methyl chloride (MeCl) and methyl iodide (MeI) as well as MeBr. Consumption of >100 μM MeBr by cells grown on glucose, acetate, or monomethylamine required induction. Induction was inhibited by chloramphenicol. However, cells had a constitutive ability to consume low concentrations (<20 nM) of MeBr. Glucose-grown cells were able to readily oxidize [14C]formaldehyde to 14CO2 but had only a small capacity for oxidation of [14C]methanol. Preincubation of cells with MeBr did not affect either activity, but MeBr-induced cells had a greater capacity for [14C]MeBr oxidation than did cells without preincubation. Consumption of MeBr was inhibited by MeI, and MeCl consumption was inhibited by MeBr. No inhibition of MeBr consumption occurred with methyl fluoride, propyl iodide, dibromomethane, dichloromethane, or difluoromethane, and in addition cells did not oxidize any of these compounds. Cells displayed Michaelis-Menten kinetics for the various methyl halides, with apparent Ks values of 190, 280, and 6,100 nM for MeBr, MeI, and MeCl, respectively. These results suggest the presence of a single oxidation enzyme system specific for methyl halides (other than methyl fluoride) which runs through formaldehyde to CO2. The ease of induction of methyl halide oxidation in strain IMB-1 should facilitate its mass culture for the purpose of reducing MeBr emissions to the atmosphere from fumigated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号