首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A wall-bound endo-1,4-ß-glucanase (EC 3.2.1.4 [EC] ) wasobtained from a preparation of the cell walls of suspension-culturedpoplar cells and purified to electrophoretic homogeneity bycation-exchange, hydrophobic, and gel-filtration chromatography.The molecular mass was estimated to be 47 kDa by SDS-PAGE and48 kDa by gel filtration on Superdex 200 pg. The isoelectricpoint (pI) was 5.6. The purified enzyme catalyzed the endo-hydrolysisof carboxymethylcellulose with an optimal pH of 6.5, a Km of1.2 mg ml-1, and a Vmax of 280 units. The purified enzyme specificallyhydrolyzed the 1,4-ß-glucosyl linkages of carboxymethylcellulose,phospho-swollen cellulose, lichenan, xylan and xyloglucan. Theactivity of the enzyme was strongly stimulated by cysteine-HCl.The N-terminal sequence of the enzyme was similar to that ofan extracellular endo-1,4-ß-glucanase found in suspensioncultures of poplar cells and some homology was recognized toavocado fruit-ripening and bean abscission endo-1,4-ß-glucanases. 1This work was supported in part by a grant from the Toray ScienceFoundation, Japan, and by a Grant-in-Aid from the Ministry ofEducation, Science and Culture of Japan.  相似文献   

3.
Lymphocytic ß1,4-galactosyltransferase (ß1,4-GalTase,EC 2.4.1.38 [EC] ) activity was measured in B cells using a neoglycoprotein,N-acetylglucosamine-phenylisothlocyanate-bovine serum albumin(GlcNAc-pITC-BSA), as an acceptor substrate in a novel enzyme-linkedimmunosorbent assay (ELISA)-based method. This assay provedto be much simpler to use than the lengthy and expensive radiochemicalassays commonly used, and has the additional advantage thatit specifically detects the enzyme mediating transfer via theGalß1,4GlcNAc linkage. A F(ab')2 antibody againstGalTase was able to specifically inhibit the reaction. Greatersensitivity for ß1,4-GalTase activity was obtainedusing GlcNAc-pITC-BSA as an acceptor substrate rather than ovalbumin.Low levels of ß-galactosidase activity were detectablein lymphocyte cell lysates at acidic pH, although such activitywas not detectable at the neutral pH used in the ß1,4-GalTaseactivity assay. Using this assay with the GlcNAc-pITC-BSA acceptor,similar ß1,4-GalTase activities were observed in CD19+B cells from patients with rheumatoid arthritis (RA) to thoseseen in normal control individuals. ELISA ß1,4-galactosyltransferase lymphocyte neoglycoprotein radiochemical  相似文献   

4.
A membrane fraction from flax cells was able to incorporate[14C]galactose from UDP-D-[14C]galactose in vitro. The productsof the reaction, characterized by methylation analysis, consistedof a rß-1,4-galactan (solubilized mainly in water)and a rß-1,3- rß-1,6-galactan (solubilizedmainly in alkali). These results indicated the presence of severalgalactan synthase complexes, as did a profile of the relationshipbetween pH and activity which revealed both a maximum at pH6.5 and a shoulder at pH 8. Moreover, galactan synthase activitieswere found at two densities: 1.125 g cm–3 (Golgi membranes)and 1.07–1.08 g cm–3 (corresponding to low-densityvesicles). Partial characterization of one enzymatic system (maximaly activeat pH 8 in the presence of 5 mM MgCl2) was achieved. The Kmfor UDP-galactose and Vmax were 38 µM and 4.5 nmol h–1(mg protein)–1, respectively. (Received June 6, 1993; Accepted September 22, 1993)  相似文献   

5.
Characterization of the adsorption of Xyloglucan to Cellulose   总被引:7,自引:0,他引:7  
The binding of xyloglucan- and cello-oligosaccharides to cellulosescan be expressed by Langmuir adsorption isotherms, in whichthe levels of adsorption maxima are all similar but very low.In the present study, although the adsorption constant increasedwith increases in the degree of polymerization (DP) of the 1,4-rß-glucosylresidues of xyloglucan- and cello-oligosaccharides, the adsorptionconstant of cellopentitol to cellulose was similar to that ofhendecosanosaccharide (glucose/xylose, 12 : 9), demonstratingless extensive binding in the case of xyloglucan oligosaccharidesin spite of longer chains of 1,4-rß-glucosyl residues.The binding to cellulose of xyloglucans from pea and Tamarindusindica can also be expressed as Langmuir adsorption isotherms.The adsorption constant for pea xyloglucan with a DP for 1,4-rß-glucosylresidues of 150 was obviously higher than that for Tamarindusxyloglucan with a DP of 3,000. The adsorption maximum and adsorptionconstant of Tamarindus xyloglucan decreased gradually as theDP of 1,4-rß-glucosyl residues decreased from 3,000to 64. This result demonstrates that fucosylated pea xyloglucanhas a higher adsorption constant for cellulose than non-fucosylatedTamarindus xyloglucan when the DP of 1,4-rß-glucosylresidues is identical. These findings indicate that xyloglucanbinds to cellulose as a mono-layer and fucosyl residues contributeto the increase in adsorption affinity. (Received June 4, 1994; Accepted September 10, 1994)  相似文献   

6.
Endo-1,4-ß-glucanase induced by treatment of pea seedlingswith 2,4-D was extracted from a preparation of the walls ofepicotyl cells. The ß-glucanase was purified by chromatographyon DEAE-cellulose, affinity chromatography on Con A-Sepharoseand SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The activityof ß-glucanase was retained after removal of SDS andextraction from polyacrylamide gels. The band of a protein (46kDa), that corresponded to the activity of endo-1,4-ß-glucanase,was injected directly into mice for preparation of antiserumand the protein was also subjected to amino acid sequencingafter blotting onto a membrane. Western blot analysis showedthat the antiserum obtained bound to a 46-kDa polypeptide andrecognized endo-1,4-ß-glucanase. The N-terminal sequenceof the 46-kDa polypeptide revealed some homology to abscissionendo-1,4-ß-glucanases of bean and avocado fruit. (Received September 29, 1993; Accepted January 20, 1994)  相似文献   

7.
The major isoenzymes of -mannosidase (EC 3.2.1.24 [EC] ) and ß-galactosidase(ECf 3.2.1.23 [EC] ) have been separated from cotyledons of gardenpea, Pisum sativum L. (Vicieae), chick pea, Cicer arietinumL. (Cicereae), and cowpea, Vigna unguiculata (L.) Walp. (Phaseoleae).Some of their properties have been determined, including pHoptima, Km values for p-nitrophenyl glycosidc substrates, andthe effects of several inhibitors. Swainsonine, an indolizidinealkaloid, was the most effective inhibitor of mannosidase 1,with I30 values of 5.6 x 10–8 M (cowpea), 1x 10–7M (chick pea) and 2.9 x 19–7 M (pea). The most effectiveinhibitor of ß-galactosidase 2 from all sources wasD-galactonic acid-1,4-lactonwe (-lactone), with Ki values rangingbetween 3.0 and 3.9x 10–3 M. An inhibitor of the E. coliß-galactosidose, p-aminophenyl thio-ß-D-galactopyranoside,did not inhibit any of the legume ß-galctosidases;rather it enhanced the activites of the enzymes from chick peaand cowpea cotyledons. Etiolated hull and seed tissues frompea pods developing in darkness contained similar acid glycosidaseactivities to normal green tissues, thus the chloroplast isan unlikely location for ß-galactosidase 2. The majorß-galactosidasesdetected with an indigogenic substrate (5-bromo-4-chloro-3-indoxyl-ß-D-galactopyranoside)following gel electrophoresis of extracts from pea hull, seedcoats and cotyledons appeared to be different from ß-galactosidase2. Acid glycosidase, cotyledon, isoenzyme, -lactone, legume, swainsonine  相似文献   

8.
The activity of rß-cyanoalanine synthase (CAS, EC4.4.1.9 [EC] ) in cotyledons of cocklebur seeds (Xanthium penn-sylvanicumWallr.) was detected both in the soluble and particulate fractions.The CAS activity of the soluble fraction (cytosolic CAS activity)was 10 times higher than that of the particulate fraction. TheCAS activity of the particulate fraction was confirmed to belocalized in the mitochondria. Both enzymatic activities wereclearly separated by non-denaturing PAGE. The enzyme with cytosolicCAS activity has been extensively purified and separated intothree different forms designated as cyt-1, cyt-2, and cyt-3.According to the SDS-PAGE analysis, the three enzymes are estimatedto be a homodimer composed of 35-kDa sub-units. The purifiedenzymes showed CS activity. Partial amino acid sequences ofcyt-1 were determined and had a high homology with cysteinesynthases (CS, EC 4.2.99.8 [EC] ) from other plant sources. The catalyticaction of the purified CSs in converting cyanide and cysteineinto H2S and rß-cyanoalanine was confirmed by thedetection of significant 14CN incorporation into rß-cyanoalanine.These results indicated that cytosolic CAS activity is due tocytosolic CS and suggested that the CAS activity of CS is likelyto be involved in cyanide metabolism in plant tissues. (Received January 7, 1998; Accepted March 16, 1998)  相似文献   

9.
A single-gene recessive mutant (Abs-) of Lupinus angustifoliusL. ‘Danja’ that does not abscise any organs wascompared with its parent during continuous exposure of explantsfrom 14 d old seedlings to 10 µl l-1ethylene. Both endo-(1,4)-ß- D -glucanase (cellulase) and polygalacturonase(PGA) activities increased significantly and progressively inpetiole-stem abscission zones of the parent before the onsetof abscission, and were reflected in a rapid decline in breakstrengthfrom 300 to 70 g within 32 h. In the mutant there was negligibleincrease in hydrolytic enzyme activity, breakstrength declinedslowly (to 180–200 g by 72 h) and there was no abscission.Isoelectric focusing showed two cellulase isoforms (pI 5.0 andpI 8.5) expressed in abscission zones of the parent; these wereexpressed at much lower levels in the mutant. These data areinterpreted to indicate that expression of at least two formsof cellulase activity is enhanced by ethylene in normal petioleabscission zones of lupin. PGA activity also increased in theabscission zone tissue of the parent but to a lesser extentin that of the mutant. We attribute the Abs-phenotype to mutationof a gene regulating ethylene-responsive expression of abscission-specifichydrolytic enzymes. Copyright 2001 Annals of Botany Company Lupinus angustifolius, abscission, breakstrength, cellulase, ethylene, legume, lupin, mutant, polygalacturonase  相似文献   

10.
3rß-Fluorogibberellin A9 (3rß-fluoro-GA9),3rßfluoro-GA20, 3rß-fluorodeoxygibberellinC (3rß-fluoro-DGC) and 13-fluoro-GA9 were prepared,and their effects on plant growth and gibberellin (GA) 3rß-hydroxyIaseswere examined. 3rß-Fluoro-GA9 and 3rß-fluoro-GA20promoted the growth of dwarf rice (Oryza sativa L. cv. Tan-ginbozu)seedlings to three times higher than the control seedlings ata dosage of 3 µ plant–1, and 3rßfluoro-DGCto twice higher at the same dosage. 3rßg-Fluoro-GA9was active in cucumber (Cucumis sativus L.) hypocotyl assay,its activity being about one-thirtieth as much as that of GA4.3rß-Fluoro-GAs were active per se in promoting theshoot elongation of rice. 3rß-Fluoro-DGC inhibitedthe 3rß-hydroxylation of [3H2]GA9 to [3H]GA4 by GArß-hydroxylase from bean (Phaseolus vulgaris L.),but 3rß-fluoro-GA9 and 3rß-fluoro-GA20 didnot show any effects on the enzyme activity. These 3rß-fluoro-GAsalso showed no or only a weak inhibitory effect on the rß-hydroxylasefrom pumpkin (Cucurbita maxima L.). 13-Fluoro-GA9 promoted growthof rice and cucumber seedlings, and inhibited the 3rß-hydroxylasesfrom both bean and cucumber. 13-Fluoro-GA9was converted into13-fluoro-GA4 and 2,3-didehydro-13-fluoro-GA9, in a cell-freesystem from bean, and conversion of 13-fluoro-GA9 into 13-fluoro-GA4was also observed in a cell-free system from pumpkin. Theseresults suggest that 13-fluoro-GA9 is one of the substratesof GA 3rß-hydroxy-lases, and that 13-fluoro-GA9 isactive as a result of the conversion to 13-fluoro-GA4 in riceand cucumber seedlings. (Received October 27, 1997; Accepted March 13, 1998)  相似文献   

11.
The effect of Ca2+ and ammonia on mitochondrial NADH-glutamatedehydrogenase (GDH: EC 1.4.1.2 [EC] ) isolated from turnip root (Brassicarapa L.) activity was examined. Increasing the ammonia [(NH4)2SO4]concentration led to significant substrate inhibition whichcould be reversed by micromolar levels of Ca2+. The sensitivityof the enzyme to ammonia inhibition and its reversal by Ca2+was affected by proteolysis. After treatment with various proteases,lower concentrations of Ca2+ were capable of fully activatingthe enzyme or overcoming the inhibitory effects of high ammonium,compared to non-treated enzyme. However, the protease-treatedenzyme was still sensitive to ethylene glycol-bis(ß-aminoethylether) N,N,N',N'-tetraacetate (EGTA). In contrast, NADH-GDHactivity was inhibited approx. 30% by organic mercurials (200µm), but the residual activity was not affected by thesubsequent additions of EGTA. NADH-GDH activity could also bestimulated by additions of high concentrations of NaCl (300mM) in the absence of added Ca2+. These results suggest thathydrophobic and -SH groups may be involved in the regulationof mitochondrial NADH-GDH activity by Ca2+. 2 Present address: CSIRO Division of Horticulture, Urrbrae,S.A. 5064, Australia (Received April 18, 1990; Accepted July 23, 1990)  相似文献   

12.
Deoxygibberellin C (DGC), a C/D ring-rearranged isomer of GA20,was shown to inhibit the conversion of [2,3-3H2]GA9 to [2-3H]GA4by gibberellin 3ß-hydroxylase from immature seedsof Phaseolus vulgahs. Deoxygibberellin C inhibited the promotionof growth by exogenously applied GA20 of rice (Oryza sativaL.) seedlings. Evidence is also presented that DGC is a competitiveinhibitor of the 3ß-hydroxylase from P. vulgaris.However, DGC only weakly inhibited the conversion catalyzedby the 3ß-hydroxylase from Cucurbita maxima at highconcentrations, and it did not inhibit the promotion of growthby exogenously applied GA9 of cucumber (Cucumis sativus) seedlings.These results suggest that the 3ß-hydroxylases fromP. vulgaris and C. maxima have different structural requirementswith respect to their substrates. 16-Deoxo-DGC also inhibitedcatalysis of the same conversion by 3ß-hydroxylasefrom P. vulgaris, and it slightly inhibited the conversion catalyzedby the enzyme from C. maxima. Application of 16-deoxo-DGC causedthe promotion of the growth of seedlings of both rice and cucumber. 3 Present address: Genetic Engineering Center, Korea Instituteof Science and Technology, Daejeon 305–606, Korea 4 Present address: Department of Agricultural Chemistry, UtsunomiyaUniversity, Utsunomiya-shi, Tochigi, 321 Japan (Received September 25, 1990; Accepted December 17, 1990)  相似文献   

13.
Inhibition of the biosynthesis of gibberellins by prohexadione,3,5-dioxo-4-propionylcyclo-hexanecarboxylic acid, was studiedwith cell-free systems derived from immature seeds of Cucur-bitamaxima, Phaseolus vulgaris and Pisum sativum. Prohexadione,at a concentration of 10–4 M, inhibited C-7 oxidationof GA12-aldehyde, C-20 oxidation of GA15, conversion of C20-gib-berellinsto C19-gibberellins, 3ß-hydroxylation, 2,3-dehydrogenationof GA20, 2,3-epoxidation of GA5 and 2ß-hydroxylationof GA9 and GA20. The 3ß-hydroxylase activity appearedto be more sensitive to prohexadione than were the C-20 oxygenaseand the 2ß-hydroxylase activities. The conversionof mevalonic acid to GA12-aldehyde and the 13-hydroxylationof GA12 were not affected by prohexadione at a concentrationof 3 ? 10–4 M. All of the steps inhibited by prohexadioneare oxidation steps catalyzed by soluble enzymes that require2-oxoglutarate, Fe2+ and oxygen, and all of them occur distalto the synthesis of GA12-aldehyde in the biosynthesis of gibberellins. (Received April 4, 1990; Accepted September 14, 1990)  相似文献   

14.
A macromolecular complex composed of xyloglucan and cellulosewas isolated from elongating regions of stems of etiolated pea(Pisum sativum L. var Alaska) seedlings and binding of a xyloglucan-specificantibody was examined after treatment of the complex with endo-1,4-ß-glucanaseor 24% KOH. The antibody bound to the complex but the extentof binding was reduced after treatment of the complex with endo-1,4-ß-glucanaseand was hardly detectable after treatment with 24% KOH. Themolecular weight of the xyloglucan that remained (5%) in theß-glucanase-treated complexes was less than 9,200.Pea xyloglucan was allowed to bind to enzymeand alkali-treatedcomplexes to generaly reconstituted complexes. The amount ofthe antibody that bound to each type of reconstituted complexwas similar but was much lower than that bound to the nativecomplex. Immunogold labeling indicated that most of the antigenwas widely distributed between microfibrils in the native complex,whereas the antigen appeared to be confined to the microfibrilsin the reconstituted complexes. These findings suggest thata part of each xyloglucan molecule is strongly associated withcellulose microfibrils while the rest is free of the microfibrilsin the native complex. 1This work was supported in part by a grant from the YamadaScience Foundation.  相似文献   

15.
We previously showed that human melanoma, CHO and other cellscan convert ß-xylosides into structural analogs ofganglioside GM3. We have investigated several potential acceptorsincluding a series of n-alkyl-ß-D-glucosides (n =6–9). All were labeled with 3H-galactose when incubatedwith human melanoma cells. Octyl-ß-D-glucoside (GlcßOctyl)was the best acceptor, whereas neither octyl--D-glucoside norN-octanoyl-methylglucamine (MEGA 8) were labeled. Analysis ofthe products by a combination of chromatographic methods andspecific enzyme digestions showed that the acceptors first receiveda single Galß1,4 residue followed by an 2,3 linkedsialic acid. Synthesis of these products did not affect cellviability, adherence, protein biosynthesis, or incorporationof radio-labeled precursors into glycoprotein, glycolipid orproteoglycans. To determine which ß1,4 galactosyltransferase synthesized Galß1,4GlcßOctyl,we analyzed similar incubations using CHO cells and a mutantCHO line (CHO 761) which lacks GAG-core specific ß1,4galactosyltransferase. The mutant cells showed the same levelof incorporation as the control, eliminating this enzyme asa candidate. Thermal inactivation kinetics using melanoma cellmicrosomes and rat liver Golgi to galactosylate GlcßOctylshowed the same half-life as UDP-Gal:GlcNAc ß1,4 galactosyltransferase,whereas LacCer synthase was inactivated at a much faster rate.We show that GlcßOctyl is a substrate for purifiedbovine milk UDP-Gal:GlcNAc ß1,4 galactosyltransferaseFurthermore, the galactosylation of GlcßOctyl by CHOcell microsomes can be competitively inhibited by GlcNAc orGlcNAcßMU . These results indicate that UDP-Gal:GlcNAcß1,4 galactosyltransferase is the enzyme used forthe synthesis of the alkyl lactosides when cells or rat liverGolgi are incubated with alkyl ß glucosides. alkylglucosides galactosyltransferase glycolipid artificial acceptors  相似文献   

16.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

17.
Pyridoxal 5-phosphate, phenyl phosphate and acetyl phosphate,as well as rß-naphthyl monophosphate, inhibited photophosphorylationof spinach chloroplasts competitively with Pi and noncompetitivelywith ADP. The apparent dissociation constant of the inhibitor-enzymecomplex (Ki) values of pyridoxal 5-phosphate, phenyl phosphateand acetyl phosphate for the Pi site were 1.1, 3.8 and 2.4 mM,respectively. These organic phosphates inhibited Ca2+-ATPaseof the isolated coupling factor 1 (CF1) (EC 3.6.1.3 [EC] ) noncompetitivelywith ATP. AMP, creatine phosphate, fructose 1,6-bisphosphate,glucose 6-phosphate, 3-phosphoglyceric acid, ribose 5-phosphateand PPi did not significantly inhibit photophosphorylation.Like rß-naphthyl monophosphate, pyridoxal 5-phosphateand phenyl phosphate inhibited photophosphorylation and thecoupled electron transport, but were almost without effect onthe basal electron transport. On the other hand, acetyl phosphateconsiderably inhibited photophosphorylation, but had almostno effect on the coupled electron transport rate and the basalrate. The results suggest that these organic phosphates inhibitphotophosphorylation by binding at the Pi site on the activecenter of CF1 and that their binding inhibits the ATPase activityof isolated CF1. These four organic phosphates which inhibited photophosphorylationcompetitively with Pi could not substitute for ADP or ATP ininhibiting ferricyanide photoreduction by decreasing H+-permeabilitythrough CF1 and in protecting the ATPase of isolated CF1 againstcold-anion inactivation. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H.S. (Received May 25, 1981; Accepted September 28, 1981)  相似文献   

18.
Avian ß1,4 galactosyltransferase (GalTase) was purifiedfrom chicken serum, partially characterized, and compared tomammalian GalTase using antibody cross-reactivity, North-ernblot hybridization and amino acid sequence analysis. The enzymewas purified to apparent homogeneity by lactalbumin(LA)-agaroseaffinity chromatography followed by preparative SDS-polyacrylamidegel electrophoresis, and identified as two proteins of apparentmolecular masses of 39 and 46 kD. Chicken serum GalTase hada Km for UDPGal of 42 µM, for GlcNAc of 10 mM and hadoptimal activity in the presence of 10–20 mM MnCl2 Substrateand linkage specificity analyses indicated that the purifiedenzyme behaves as a traditional Gal ß1,4 GlcNAc:GalTase,since: (i) the avian ß1,4 GalTase bound to -LA; (ii)terminal GlcNAc residues served as good acceptors for chickenserum GalTase; (iii) the enzyme was inhibited by high concentrationsof GlcNAc; (iv) the galactosylated product was sensitive toß1,4-specific ß-galactosidase. Finally,the disaccharide reaction product comigrated with authenticß1,4 N-acetyllactosamine standard. No other GalTaseactivities were detectable using a battery of defined glycosidesubstrates. Polyclonal antibodies raised against the two gel-purifiedGalTase proteins showed reactivity with avian GalTase by ELISAand immunoprecipitation assays. The antibodies also inhibitedGalTase activity toward both high mol. wt and monosaccharideacceptor substrates. Despite similar kinetics and substratespecificity, the avian and mammalian GalTases showed littleoverall structural similarity, since polyclonal anti-avian GalTaseIgG failed to react with mammalian GalTase purified from bovinemilk, and conversely anti-bovine milk GalTase IgG did not reactwith the avian enzyme. Furthermore, in Northern blot analysis,no hybridization was detected when chicken embryo liver poly(A)+RNA was probed with a mouse GalTase cDNA, even under conditionsof reduced stringency. Amino acid sequence analysis identifiedthree of five tryptic peptides that are homologous to the mammaliansequence within a putative substrate binding domain and thecarboxy terminal domain of the enzyme. Their overall structuraldisparity leads us to believe that regions of homology betweenthe avian and mammalian GalTases may represent active sitesof the enzyme. avian ß1,4 galactosyltransferase homology mammalian purification  相似文献   

19.
A small amount of cytoplasmic ß-1,4-glucan, whichmight be involved in the synthesis of cellulose in the cellwall, was found in the homogenate prepared from the hypocotylsof seedlings of Phaseolus aureus. Upon hydrolysis by cellulaseof the 20,000?g pellet from the cytoplasmic fraction of segmentsincubated in a [14C]-glucose solution, [14C]-cellobiose wasproduced, with specific radioactivities 3 to 10 times greaterthan those of the cellobiose from cellulose in the cell wallat various incubation periods. The incoporation of radioactivityfrom [14C]-glucose into this cytoplasmic ß-1,4-glucanwas therefore faster than that into cellulose constituting thecell wall. Hence, it seemed that the former ß-1,4-glucancould be turned over. To examine whether the- cytoplasmic ß-1,4-glucanis carried by some subcellular components, cytoplasmic ß-1,4-glucanin the cell was fractionated by differential centrifugation,two enzyme activities being measured as the markers of subcellularcomponents. The distribution of ß-1,4-glucan was similarto that of UDPG-glucosyltransferase activity but not to thatof IDP-ase activity. The result suggests that the cytoplasmicß-1,4-glucan has some relation to plasma membranes. Coumarin, known as a specific inhibitor for the biosynthesisof cellulose in plant cells, was shown to inhibit the incorporationof radiocarbon from [14C]-glucose into cytoplasmic ß-1,4-glucanto the same extent as that into cellulose in the cell wall ofthe hypocotyls. 1 Present address: Department of Biological Science, TohokuUniversity, Kawauchi, Sendai 980, Japan. (Received May 31, 1976; )  相似文献   

20.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号