首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Throughout the CNS, small conductance Ca(2+)-activated potassium (SK) channels modulate firing frequency and neuronal excitability. We have identified a novel, shorter isoform of standard SK2 (SK2-std) in mouse brain which we named SK2-sh. SK2-sh is alternatively spliced at exon 3 and therefore lacks 140 amino acids, which include transmembrane domains S3, S4 and S5, compared with SK2-std. Western blot analysis of mouse hippocampal tissue revealed a 47 kDa protein product as predicted for SK2-sh along with a 64 kDa band representing the standard SK2 isoform. Electrophysiological recordings from transiently expressed SK2-sh revealed no functional channel activity or interaction with SK2-std. With the help of real-time PCR, we found significantly higher expression levels of SK2-sh mRNA in cortical tissue from AD cases when compared with age-matched controls. A similar increase in SK2-sh expression was induced in cortical neurons from mice by cytokine exposure. Substantial clinical evidence suggests that excess cytokines are centrally involved in the pathogenesis of Alzheimer's disease. Thus, SK2-sh as a downstream target of cytokines, provide a promising target for additional investigation regarding potential therapeutic intervention.  相似文献   

2.
《FEBS letters》1986,206(1):87-92
The patch-clamp technique was employed to record single channel currents in patches of basolateral membrane from enterocytes isolated from rat small intestine. We demonstrate the presence of a large conductance (250 pS), voltage- and calcium-activated, the maxi. K+ channel in this membrane. Currents in this K+ channel were blocked by the application of barium (5 mM) to the extracellular membrane face.  相似文献   

3.
It has been shown that A2A adenosine receptors are implicated in pain modulation. The precise mechanism by which activation of A2A receptors produces analgesic effects, however, remains unclear. The aim of this study was to investigate the possible involvement of apamin-sensitive calcium-activated potassium channels (SKCa) and voltage-gated potassium (Kv) channels in A2A receptor activation-induced analgesic effects. Using mice, we evaluated the influence of apamin, a non specific blocker of SKCa channels, Lei-Dab7 (an analog of scorpion Leiurotoxin), a selective blocker of SKCa2 channels, and kaliotoxin (KTX) a Kv channel blocker, on the CGS 21680 (A2A adenosine receptor agonist)-induced increases in hot plate and tail pinch latencies. All drugs were injected in mice via the intracerebroventricular route. We found that apamin and Lei-Dab7, but not KTX, reduced antinociception produced by CGS21680 on the hot plate and tail pinch tests in a dose dependent manner. Lei-Dab 7 was more potent than apamin in this regard. We conclude that SKCa but not Kv channels are implicated in CGS 21680-induced antinociception.  相似文献   

4.
Charybdotoxin (ChTX), a potent inhibitor of the high conductance Ca2(+)-activated K+ channel (PK,Ca) is a highly basic peptide isolated from venom of the scorpion Leiurus quinquestriatus hebraeus, whose primary structure has been determined (Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J., and Garcia, M. L. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3329-3333). The synthesis of this peptide using continuous flow solid phase fluorenylmethyloxycarbonyl-pentafluorophenyl ester methodology has now been achieved. The 1-37-amino acid hexasulfhydryl peptide oxidizes readily to give the tricyclic disulfide structure in good yield. This folded synthetic material is identical to native toxin based on three criteria: co-migration with ChTX on reversed phase high performance liquid chromatography (HPLC); competitive inhibition of 125I-labeled monoiodotyrosine charybdotoxin binding to bovine aortic sarcolemmal membrane vesicles with a Ki (10 pM) identical to that of native toxin; blockade of PK,Ca activity in excised outside-out patches from bovine aortic smooth muscle with the potency and inhibitory properties characteristic of ChTX (i.e. appearance of silent periods interdispersed with normal bursts of channel activity in single channel recordings). Selective enzymatic digestion of native or synthetic ChTX by simultaneous exposure to chymotrypsin and trypsin yields identical reversed phase HPLC profiles. Analysis of the sequence and amino acid composition of the resulting fragments defines a disulfide bond arrangement (Cys7-Cys28, Cys13-Cys33, Cys17-Cys35) which differs from that previously suggested. This configuration predicts a highly folded tertiary structure for ChTX which, together with observations from electrophysiological and binding experiments, suggests a possible mechanism by which ChTX interacts with PK,Ca to block channel function.  相似文献   

5.
Mammalian SK proteins are Ca2+-activated K+ channels, which show a sub-20 pS conductance. We have expressed the SK2 variant gene in Pichia pastoris and found protein to be produced at considerably higher levels than in brain tissue. The channel was correctly folded as evidenced by its high affinity interaction with apamin, a specific ligand from bee venom. However, the protein was largely unable to reach the plasma membrane, its normal destination, instead remaining in the endoplasmic reticulum. Adding a putative translocation sequence altered the intracellular distribution significantly with enhanced trafficking out of the endoplamic reticulum. Fusion of SK2 with the associated protein calmodulin also altered the channel localisation but in a different manner with channels now found mainly in transit between endoplasmic reticulum and Golgi compartments.  相似文献   

6.
We report here a characterization of two families of calcium-activated K(+) channel beta-subunits, beta2 and beta3, which are encoded by distinct genes that map to 3q26.2-27. A single beta2 family member and four alternatively spliced variants of beta3 were investigated. These subunits have predicted molecular masses of 27. 1-31.6 kDa, share approximately 30-44% amino acid identity with beta1, and exhibit distinct but overlapping expression patterns. Coexpression of the beta2 or beta3a-c subunits with a BK alpha-subunit altered the functional properties of the current expressed by the alpha-subunit alone. The beta2 subunit rapidly and completely inactivated the current and shifted the voltage dependence for activation to more polarized membrane potentials. In contrast, coexpression of the beta3a-c subunits resulted in only partial inactivation of the current, and the beta3b subunit conferred an apparent inward rectification. Furthermore, unlike the beta1 and beta2 subunits, none of the beta3 subunits increased channel sensitivity to calcium or voltage. The tissue-specific expression of these beta-subunits may allow for the assembly of a large number of distinct BK channels in vivo, contributing to the functional diversity of native BK currents.  相似文献   

7.
Ca(2+) activated K(+) channels modulate the afterhyperpolarization in neurons. Using a variety of different techniques we obtained information about the function of N- and C-terminal parts of the Ca(2+)-activated K(+) channel, SK3. By means of the yeast two hybrid technique we found an interaction between N-C and N-N- terminal parts of SK3. The strong N-C and N-N interaction was specific for SK3 and could not be observed for SK1 and SK2. Possibly a homotetrameric assembly of SK3 is favored in tissues were all SK channels are expressed. In addition, the interaction in SK3 was independent of the length of the polymorphic glutamine repeat in the N-terminus of SK3. Electrophysiological investigations showed that expression of amino acids 1-299 of SK3 (SK3N_299) modified the 1-EBIO pharmacology of endogenous SK3 channels in PC12 cells without affecting the Ca(2+)-sensitvity. The activation by 0.5 mM 1-EBIO in cells expressing amino acids 1-299 of SK3 was reduced by 32% in comparison to control experiments. Considering the N-C interaction in yeast, we conclude that the sensitivity of SK3 channels to 1-EBIO was modified by N-C interactions with SK3N_299. Therefore we conclude that N-C interactions influence SK3 channel function.  相似文献   

8.
Small conductance Ca2+-activated K+ (SK) channels have been cloned from mammalian brain, but little is known about the molecular characteristics of SK channels in nonexcitable tissues. Here, we report the isolation from rat liver of an isoform of SK3. The sequence of the rat liver isoform differs from rat brain SK3 in five amino acid residues in the NH3 terminus, where it more closely resembles human brain SK3. SK3 immunoreactivity was detectable in hepatocytes in rat liver and in HTC rat hepatoma cells. Human embryonic kidney (HEK-293) cells transfected with liver SK3 expressed 10 pS K+ channels that were Ca2+ dependent (EC(50) 630 nM) and were blocked by the SK channel inhibitor apamin (IC(50) 0.6 nM); whole cell SK3 currents inactivated at membrane potentials more positive than -40 mV. Notably, the Ca2+ dependence, apamin sensitivity, and voltage-dependent inactivation of SK3 are strikingly similar to the properties of hepatocellular and biliary epithelial SK channels evoked by metabolic stress. These observations raise the possibility that SK3 channels influence membrane K+ permeability in hepatobiliary cells during liver injury.  相似文献   

9.
Members of the CorA-Mrs2-Alr1 superfamily of Mg2+ transporters are ubiquitous among pro- and eukaryotes. The crystal structure of a bacterial CorA protein has recently been solved, but the mode of ion transport of this protein family remained obscure. Using single channel patch clamping we unequivocally show here that the mitochondrial Mrs2 protein forms a Mg2+-selective channel of high conductance (155 pS). It has an open probability of ∼60% in the absence of Mg2+ at the matrix site, which decreases to ∼20% in its presence. With a lower conductance (∼45 pS) the Mrs2 channel is also permeable for Ni2+, whereas no permeability has been observed for either Ca2+, Mn2+, or Co2+. Mutational changes in key domains of Mrs2p are shown either to abolish its Mg2+ transport or to change its characteristics toward more open and partly deregulated states. We conclude that Mrs2p forms a high conductance Mg2+ selective channel that controls Mg2+ influx into mitochondria by an intrinsic negative feedback mechanism.  相似文献   

10.
Charybdotoxin is a high-affinity specific inhibitor of the high-conductance Ca2+-activated K+ channel found in the plasma membranes of many vertebrate cell types. Using Ca2+-activated K+ channels reconstituted into planar lipid bilayer membranes as an assay, we have purified the toxin from the venom of the scorpion Leiurus quinquestriatus by a two-step procedure involving chromatofocusing on SP-Sephadex, followed by reversed-phase high-performance liquid chromatography. Charybdotoxin is shown to be a highly basic protein with a mass of 10 kDa. Under our standard assay conditions, the purified toxin inhibits the Ca2+-activated K+ channel with an apparent dissociation constant of 3.5 nM. The protein is unusually stable, with inhibitory potency being insensitive to boiling or exposure to organic solvents. The toxin's activity is sensitive to chymotrypsin treatment and to acylation of lysine groups. The protein may be radioiodinated without loss of activity.  相似文献   

11.
The solution structure of contryphan-Vn, a cyclic peptide with a double cysteine S-S bridge and containing a D-tryptophan extracted from the venom of the cone snail Conus ventricosus, has been determined by NMR spectroscopy using a variety of homonuclear and heteronuclear NMR methods and restrained molecular dynamics simulations. The main conformational features of backbone contryphan-Vn are a type IV beta-turn from Gly 1 to Lys 6 and a type I beta-turn from Lys 6 to Cys 9. As already found in other contryphans, one of the two prolines--the Pro4--is mainly in the cis conformation while Pro7 is trans. A small hydrophobic region probably partly shielded from solvent constituted from the close proximity of side chains of Pro7 and Trp8 was observed together with a persistent salt bridge between Asp2 and Lys6, which has been revealed by the diagnostic observation of specific nuclear Overhauser effects. The salt bridge was used as a restraint in the molecular dynamics in vacuum but without inserting explicit electrostatic contribution in the calculations. The backbone of the unique conformational family found of contryphan-Vn superimposes well with those of contryphan-Sm and contryphan-R. This result indicates that the contryphan structural motif represents a robust and conserved molecular scaffold whose main structural determinants are the size of the intercysteine loop and the presence and location in the sequence of the D-Trp and the two Pro residues.  相似文献   

12.
Polymyxin B, a novel inhibitor of red cell Ca2+-activated K+ channel   总被引:1,自引:0,他引:1  
Polymyxin B (PXB), a cyclic peptide antibiotic, in concentrations 0.1-3.0 mg/ml (0.08-4.0 mmol/l), inhibited the K+ efflux induced by opening of the Ca2+-activated K+ channel (the Gárdos effect) in intact human red blood cells. The inhibition was observed when the Gárdos effect was elicited by Ca2+ in the presence of vanadate, or propranolol, in ATP-depleted cells, and in A23187-treated cells. The inhibition of the Gárdos effect is caused neither by the inhibition of the anion channel by PXB nor by the inhibition of Ca2+ entry. It can be ascribed to the inhibition of the Ca2+-activated K+ channel. The mechanism of the inhibition remains to be elucidated.  相似文献   

13.
14.
Wu Y  Cao Z  Yi H  Jiang D  Mao X  Liu H  Li W 《Biophysical journal》2004,87(1):105-112
Computational methods are employed to simulate interaction of scorpion toxin ScyTx in complex with the small conductance calcium-activated potassium channel rsk2. All of available 25 structures of ScyTx in the Protein Data Bank determined by NMR were considered for improving performance of rigid protein docking of ZDOCK. Four main binding modes were found among a large number of predicted complexes by using clustering analysis, screening with expert knowledge, energy minimization, and molecular dynamics simulations. The quality and validity of the resulting complexes were further evaluated by molecular dynamics simulations with the generalized Born solvation model and by calculation of relative binding free energies with the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) in the AMBER 7 suit of programs. The complex formed by the 22nd structure of the ScyTx and rsk2 channel was identified as the most favorable complex by using a combination of computational methods, which contain further introduction of flexibility without restraining residue side chain. From the resulted spatial structure of the ScyTx and rsk2 channel, ScyTx associates the mouth of the rsk2 channel with alpha-helix rather than beta-sheet. Structural analysis first revealed that Arg(13) played a novel and vital role of blocking the pore of the rsk2 channel, whose role is remarkably different from that of highly homologous scorpion toxin P05. Between the interfaces in the ScyTx-rsk2 complex, strong electrostatic interaction and hydrogen bonds exist between Arg(13) of ScyTx and Gly-Tyr-Gly-Asp sequential residues located in the four symmetrical chains of the pore region. Simultaneously, five hydrogen bonds between Arg(6) of ScyTx and Asp(341)(C), Val(366)(C), and Pro(367)(C), and electrostatic interaction between Arg(6) of ScyTx and Asp(364)(B) and Asp(341)(C) are also found by structural analysis. In addition, His(31) located at the C-terminal of ScyTx is surrounded by Val(342)(A), Asp(364)(A), Met(365)(A), Pro(367)(B), and Asn(366)(B) within a contact distance of 4.0 A. These simulation results are in good agreement with experimental data and can effectively explain the binding phenomena between ScyTx and the potassium channel at the level of molecular spatial structure. The consistency between results of molecular modeling and experimental data strongly suggests that our spatial structure model of the ScyTx-rsk2 complex is reasonable. Therefore, molecular docking combined with molecular dynamics simulations followed by molecular mechanics Poisson-Boltzmann surface area analysis is an attractive approach for modeling scorpion toxin-potassium channel complexes a priori for further biological studies.  相似文献   

15.
Measurements of 86Rb efflux across the apical and basal-lateral aspects of intact monolayers of 'high-resistance' MDCK cells mounted in Ussing chambers have been made. A transient increase in 86Rb efflux across both epithelial borders upon stimulation with adrenalineeeeeee or ionophore A23187 is observed. The increased 86Rb across the basal cell aspects is of greatest quantitative importance. Measurements of total cellular K+ contents by flame photometry of tissue extracts indicate a net loss of K+ following adrenalin addition. The effects of adrenalin and ionophore A23187 upon 86Rb efflux are abolished in 'Ca2+ -free' media. The properties of the Ca2+ -dependent increase in 86Rb efflux show similarities to Ca2+ -activated K+ conductances in other tissues, notably human red cells, including inhibition by quinine (1 mM), tetraethylammonium (25 mM) and insensitivity to bee venom toxin (apamin) (25 nM). Adrenalin is only effective when applied to the basal bathing solution suggesting that the receptors mediating adrenalin action are located upon the basal-lateral membranes. Half maximal stimulation of 86Rb efflux by adrenalin is observed at 9.1 X 10(-7) M. The action of various adrenergic receptor agonists and antagonists are consistent with adrenalin action being mediated by an alpha-adrenergic receptor.  相似文献   

16.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

17.
A recent study indicated that apamin-sensitive current (I KAS, mediated by apamin-sensitive small conductance calcium-activated potassium channels subunits) density significantly increased in heart failure and led to recurrent spontaneous ventricular fibrillation. While the underlying molecular correlation with SK channels is still undetermined, we hypothesized that they are remodeled in HF and that bisoprolol could reverse the remodeling. Volume-overload models were created on male Sprague-Dawley rats by producing an abdominal arteriovenous fistula. Confocal microscopy, quantitative real-time PCR, and western blot were performed to investigate the expression of SK channels and observe the influence of β-blocker bisoprolol on the expression of SK channels I KAS, and the effect of bisoprolol on I KAS and the sensitivity of I KAS to [Ca2+]i at single isolated cells were also explored using whole-cell patch clamp techniques. SK channels were remodeled in HF rats, displaying the significant increase of SK1 and SK3 channel expression. After the treatment of HF rats with bisoprolol, the expression of SK1 and SK3 channels was significantly downregulated, and bisoprolol effectively downregulated I KAS density as well as the sensitivity of I KAS to [Ca2+]i. Our data indicated that the expression of SK1 and SK3 increased in HF. Bisoprolol effectively attenuated the change and downregulated I KAS density as well as the sensitivity of I KAS to [Ca2+]i.  相似文献   

18.
The opening and closing of the ion conduction pathway in ion channels underlies the generation and propagation of electrical signals in biological systems. Although electrophysiological approaches to measuring the flow of ions in the open state have contributed profoundly to our understanding of ion permeation and gating, it remains unclear how much the ion-throughput rate decreases upon closure of the ion conduction pore. To address this fundamental question, we expressed the Shaker Kv channel at high levels and then measured macroscopic K+ currents at negative membrane voltages and counted the number of channels by quantifying the translocation of gating charge. Our results show that the conductance of the closed state is between 0 and 0.16 fS, or at least 100,000 times lower than for the open state of the channel, indicating that the flow of ions is very tightly regulated in this class of K+ channels.  相似文献   

19.
Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are the mediators of inflammation. This enzyme exists mainly in two isoforms, COX1 and COX2. Prostaglandins responsible for the inflammatory process could be sufficiently controlled with the conventional non-steroidal anti-inflammatory drugs (NSAIDs). These drugs, however, had adverse gastrointestinal side-effects and, therefore, drugs that selectively inhibit COX2, such as the coxibs, were developed. Recent reports on the harmful cardiovascular and renal side-effects of the conventional NSAIDs as well as the COX2 selective inhibitors valdecoxib and rofecoxib have once again led to the quest for a novel class of COX2 selective inhibitors. Keeping this in mind, we have used the available X-ray crystal structures of the complexes of COX1 and COX2 with the known inhibitors to carry out a structure-based, rational, molecular modeling approach to design a small peptide inhibitor, which is both potent and selective for COX2. Docking studies using SYBYL 6.81 (Tripos, Inc.) and AutoDock 3.0, indicate that the designed peptides inhibit COX2 with potency in the nanomolar range. Furthermore, it is found to be a million-fold selective for COX2 as compared with COX1. Thus, the small peptide inhibitor is a suitable lead compound for the design of a new class of anti-inflammatory drugs.  相似文献   

20.
The gene KCNQ1 encodes a K(+) channel alpha-subunit important for cardiac repolarization, formerly known as K(v)LQT1. In large and small intestine a channel complex consisting of KCNQ1 and the beta-subunit KCNE3 (MiRP2) is known to mediate the cAMP-activated basolateral K(+) current, which is essential for luminal Cl(-) secretion. Northern blot experiments revealed an expression of both subunits in lung tissue. However, previous reports suggested a role of KCNE1 (minK, Isk) but not KCNE3 in airway epithelial cells. Here we give evidence that KCNE1 is not detected in murine tracheal epithelial cells and that Cl(-) secretion by these cells is not reduced by the knock-out of the KCNE1 gene. In contrast we show that a complex consisting of KCNQ1 and KCNE3 probably forms a basolateral K(+) channel in murine tracheal epithelial cells. As described for colonic epithelium, the current through KCNQ1 complexes in murine trachea is specifically inhibited by the chromanol 293B. A 293B-sensitive current was present after stimulation with forskolin and agonists that increase Ca(2+) as well as after administration of the pharmacological K(+) channel activator, 1-EBIO. A 293B-inhibitable current was already present under control conditions and reduced after administration of amiloride indicating a role of this K(+) channel not only for Cl(-) secretion but also for Na(+) reabsorption. We conclude that at least in mice a KCNQ1 channel complex seems to be the dominant basolateral K(+) conductance in tracheal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号