首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red alga Mazzaella laminarioides is an economically important species with an extended latitudinal distribution along the Chilean coast. Its populations form mid-intertidal stands, several meters wide, and therefore are differentially exposed to environmental variables that result in temporal and spatial variability in productivity. We evaluated the effect of latitude and intertidal height on productivity by in situ measurement of photosynthetic performance. Daily and seasonal variations of O2-evolution rate and maximal quantum yield (F v/F m) were determined in plants from the upper and lower intertidal zone at two localities 1500,km apart. Results suggest that plant responses were mainly affected by irradiation, temperature and desiccation. At local level, upper intertidal plants showed a reduced photosynthetic rate and quantum efficiency as compared to those displayed by plants from the lower intertidal, indicating their higher level of excitation energy acclimation. Stronger acclimation differences between upper and lower intertidal plants were observed in spring and summer. Differences in photosynthetic parameters between reproductive phases were recorded in autumn and winter, regardless of the position of the individuals in the intertidal zone. The effects of tidal elevation on seasonal patterns of photosynthesis were also influenced by latitude. Seasonal variation in photosynthetic efficiency was observed in plants from the northern population at both intertidal elevations, but only at the upper intertidal level in the southern population. This study shows that production variability in M. laminarioides results from differences in the intensity of environmental factors observed seasonally at local (intertidal) and latitudinal scales.  相似文献   

2.
This study addresses the issues of infection prevalence and disease expression in two wild populations of the red algal host Mazzaella laminarioides and their variability associated with locality, season, and spatial location of the host in the intertidal zone. Our results demonstrated that Endophyton ramosum is the most frequent infective pathogen affecting M. laminarioides in Matanzas and Pucatrihue. This situation prevailed through the year and across the high-to-low intertidal gradient. Although there was a general trend for lower levels of infection in late winter and early spring, only in a few, cases was well-defined seasonality detected. Furthermore, clear seasonal patterns, as displayed by deformative disease in the high intertidal zone of Pucatrihue, were attenuated in the middle and lower intertidal zones. Differences in levels of infection in M. laminarioides between the high intertidal zones of Matanzas and Pucatrihue diminished toward the low intertidal zone. Thus, effects of seasonality and locality on infection prevalence may be influenced, at least in part, by the position of the hosts an the intertidal zone. Spatial distribution of the diseased individuals also varied along the beach. This pattern was consistent between the two sites and seemed related to wave exposure and the specific pathogen. Comparisons of the size distribution of noninfected fronds with their infected counterparts showed that infections by Endophyton ramosum and Pleurocapsa sp. more frequently affected medium-and large-sized fronds. This pattern was consistent temporally and similar in the two localities. Finally, a clear association between maturity and prevalence of infection was detected. This association resulted in most fronds of the noninfected segment of the host population being immature, whereas most mature fronds were infected. In conclusion, infectious diseases affecting the red alga Mazzaella laminarioides are a persistent phenomenon in wild populations of the host, although only a small segment of the infected populations displays the full expression of the disease. In spite of the suggested role of factors such as season, latitude, and spatial location of the host on disease prevalence and expression, additional studies are needed to understand fully the dynamics of infectious diseases in wild populations of algal hosts.  相似文献   

3.
We examined variation in leaf size and specific leaf area (SLA) in relation to the distribution of 22 chaparral shrub species on small-scale gradients of aspect and elevation. Potential incident solar radiation (insolation) was estimated from a geographic information system to quantify microclimate affinities of these species across north- and south-facing slopes. At the community level, leaf size and SLA both declined with increasing insolation, based on average trait values for the species found in plots along the gradient. However, leaf size and SLA were not significantly correlated across species, suggesting that these two traits are decoupled and associated with different aspects of performance along this environmental gradient. For individual species, SLA was negatively correlated with species distributions along the insolation gradient, and was significantly lower in evergreen versus deciduous species. Leaf size exhibited a negative but non-significant trend in relation to insolation distribution of individual species. At the community level, variance in leaf size increased with increasing insolation. For individual species, there was a greater range of leaf size on south-facing slopes, while there was an absence of small-leaved species on north-facing slopes. These results demonstrate that analyses of plant functional traits along environmental gradients based on community level averages may obscure important aspects of trait variation and distribution among the constituent species.  相似文献   

4.
The composition and distribution of the main unicellular eukaryotic groups (diatom algae, ciliates, dinoflagellates (DF), other phototrophic (PF) and heterotrophic flagellates (HF)) were investigated in sandy sediments at five stations allocated across the tidal sheltered beach of the White Sea. Overall, 75 diatoms, 98 ciliates, 16 DF, 3 PF and 34 HF species were identified; some are new records for the White Sea. Common species for each group are illustrated. Diatoms and ciliates showed high alpha-diversity (species richness per sample), whereas flagellates were characterized by high beta-diversity (species turnover across the intertidal flat). Each group demonstrated its own spatial pattern that was best matched with its own subset of abiotic variables, reflecting group-specific responses to environmental gradients. Species richness increased from the upper intertidal zone seaward for ciliates but decreased for HF, whereas autotrophs showed a relatively uniform pattern with a slight peak at the mid-intertidal zone. Across the littoral zone, all groups showed distinct compositional changes; however, the position of the boundary between “upper” and “lower” intertidal communities varied among groups. Most of the species found at Ryazhkov Island are known from many other regions worldwide, indicating a wide geographic distribution of microbial eukaryotic species.  相似文献   

5.
Most species distribution models assume a close link between climatic conditions and species distributions. Yet, we know little about the link between species'' geographical distributions and the sensitivity of performance to local environmental factors. We studied the performance of three bryophyte species transplanted at south- and north-facing slopes in a boreal forest landscape in Sweden. At the same sites, we measured both air and ground temperature. We hypothesized that the two southerly distributed species Eurhynchium angustirete and Herzogiella seligeri perform better on south-facing slopes and in warm conditions, and that the northerly distributed species Barbilophozia lycopodioides perform better on north-facing slopes and in relatively cool conditions. The northern, but not the two southern species, showed the predicted relationship with slope aspect. However, the performance of one of the two southern species was still enhanced by warm temperatures. An important reason for the inconsistent results can be that microclimatic gradients across landscapes are complex and influenced by many climate-forcing factors. Therefore, comparing only north- and south-facing slopes might not capture the complexity of microclimatic gradients. Population growth rates and potential distributions are the integrated results of all vital rates. Still, the study of selected vital rates constitutes an important first step to understand the relationship between population growth rates and geographical distributions and is essential to better predict how climate change influences species distributions.  相似文献   

6.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   

7.
以辽宁省大洼县三角洲平原水库坝体不同坡向、坡位、剖面深度的土壤为研究对象,分析了土壤含水率和可溶性盐总量在水平空间与垂直空间上的变异与分布特征。结果表明:与含水率相比,土壤可溶性盐总量的变异相对较高;二者均为中等变异性且变异性的趋势较一致。坝体南坡土壤的平均可溶性盐总量、平均含水率均大于北坡。不同土层之间平均可溶性盐总量从大到小的顺序为:中层>下层>表层;而平均含水率随土壤剖面深度增加而增加。不同坡位间可溶性盐总量没有显著性差异;上坡位与中坡位的平均含水率基本持平,下坡位最高。研究结果可为辽河三角洲地区平原水库堤坝及其周边盐碱土治理与植被恢复提供依据。  相似文献   

8.
Large valleys with opposing slopes may act as a model system with which the effects of strong climatic gradients on biodiversity can be evaluated. The advantage of such comparisons is that the impact of a change of climate can be studied on the same species pool without the need to consider regional differences. The aim of this study was to compare the assemblage of saproxylic beetles on such opposing slopes at Lower Nahal Oren, Mt. Carmel, Israel (also known as “Evolution Canyon”) with a 200–800% higher solar radiation on the south-facing (SFS) compared to the north-facing slope (NFS). We tested specific hypotheses of species richness patterns, assemblage structure, and body size resulting from interslope differences in microclimate. Fifteen flight-interception traps per slope were distributed over three elevation levels ranging from 50 to 100 m a.s.l. Richness of saproxylic beetles was on average 34% higher on the SFS compared with the NFS, with no detected influence of elevation levels. Both assemblage structure and average body size were determined by slope aspect, with more small-bodied beetles found on the SFS. Both the increase in species richness and the higher prevalence of small species on the SFS reflect ecological rules present on larger spatial grain (species-energy hypothesis and community body size shift hypothesis), and both can be explained by the metabolic theory of ecology. This is encouraging for the complementary use of micro- and macroclimatic gradients to study impacts of climate warming on biodiversity.  相似文献   

9.
In rocky intertidal habitats, the pronounced increase in environmental stress from low to high elevations greatly affects community structure, that is, the combined measure of species identity and their relative abundance. Recent studies have shown that ecological variation also occurs along the coastline at a variety of spatial scales. Little is known, however, on how vertical variation compares with horizontal variation measured at increasing spatial scales (in terms of sampling interval). Because broad-scale processes can generate geographical patterns in community structure, we tested the hypothesis that vertical ecological variation is higher than fine-scale horizontal variation but lower than broad-scale horizontal variation. To test this prediction, we compared the variation in community structure across intertidal elevations on rocky shores of Helgoland Island with independent estimates of horizontal variation measured at the scale of patches (quadrats separated by 10s of cm), sites (quadrats separated by a few m), and shores (quadrats separated by 100s to 1000s of m). The multivariate analyses done on community structure supported our prediction. Specifically, vertical variation was significantly higher than patch- and site-scale horizontal variation but lower than shore-scale horizontal variation. Similar patterns were found for the variation in abundance of foundation taxa such as Fucus spp. and Mastocarpus stellatus, suggesting that the effects of these canopy-forming algae, known to function as ecosystem engineers, may explain part of the observed variability in community structure. Our findings suggest that broad-scale processes affecting species performance increase ecological variability relative to the pervasive fine-scale patchiness already described for marine coasts and the well known variation caused by vertical stress gradients. Our results also indicate that experimental research aiming to understand community structure on marine shores should benefit from applying a multi-scale approach.  相似文献   

10.
Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externally-fertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia) population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal) was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients acts to maintain the 3 distinct genetic and morphological taxa within their preferred vertical distribution ranges. On the strength of distributional, genetic, physiological and morphological differences, we propose elevation of F. spiralis var. platycarpus from variety to species level, as F. guiryi.  相似文献   

11.
Several biological and physical factors change the rocky shore communities. The desiccation time and the tolerance of the intertidal species produce the vertical zonation. In many studies around the world, a temporal change in this zonation is presented.In Costa Rica, only studies that include temporal trends were carried out in Punta Mala and Montezuma, Pacific coast in 80's. The rocky intertidal of the Cocos Island National Park, Costa Rica were surveyed photographically. The Chatham bay was sampled in three expeditions (January 2007, October 2007 and April 2008). Photos corresponding to 25x25cm quadrats were taken with the goal to determine diversity and composition differences in rocky shore organisms between sampling dates. The Wafer bay was sampled in January and October 2007. The intertidal of Chatham consists of basaltic rock, while Wafer has basaltic and ignimbrite boulders. The main difference between sites were the higher algae cover (erect-frondose forms) and number of organism bands at Chatham bay. Temporal change was not found in the total cover of sessile fauna and autotrophs. The barnacle Tetraclita stalactifera, that occurs above the algal fringe (lower intertidal), was the invertebrate with the highest coverage. The mobile fauna biodiversity presented no significant trend between sampled months. However, the identity of species, their cover and their abundance showed a moderate temporal change. In October 2007, when the sea surface temperature was 23 degrees C the infralittoral zone had an increase in green algae cover. The red algae (crust and erect-frondose forms) were dominant in January and April. The pulmonate limpet, Siphonaria gigas and a bacterial biofilm at mid littoral showed a negative association. The snails of the high littoral and the supralittoral zone showed a temporal change in their abundance, but with contrasting patterns between sites. The temporal variation in the assemblages increased from the supralittoral to the infralittoral possibly due to changes in the water temperature and climatic conditions, that could influence the intertidal zone during the high and low tide, respectively.  相似文献   

12.
Abstract. Within the last century there has been widespread establishment of trees in mountain meadows of the Pacific Northwest. We reconstructed patterns of tree invasion at 17 meadow sites in the central Cascade Range of Oregon, USA -sites representing diverse physical environments and vegetation types and experiencing different histories of recent anthropogenic disturbance (sheep grazing). Spatial distributions and age structures of invasive tree populations were analysed with respect to climatic records and grazing history. Patterns of establishment varied considerably among meadows, reflecting strong differences in environment and grazing history. In montane hydric meadows, tree establishment was spatially clumped beneath large old trees and on elevated microsites; however the timing of invasion differed between sites with stable versus fluctuating water tables. In upland mesic/dry montane meadows, timing of invasion corresponded with cessation of sheep grazing (early 1940s) and the onset of wetter summers (mid 1940s). In the subalpine zone, climate and aspect interacted to produce contrasting histories of invasion on north- and south-facing slopes. Establishment on north-facing slopes, concentrated in heath-shrub communities, coincided with regional warming (ca. 1920–1945) when snowpacks were lighter and melted earlier. Recruitment of trees onto south-facing slopes occurred later, when conditions were wetter (1945–1985). In many environments, the spatial distribution of recruitment suggests that once trees have established, autogenic factors become increasingly important as individual trees or groups of trees alter the physical or biotic conditions that once inhibited establishment. Knowledge of the factors that influence invasion, and of their varying importance across gradients in environment and vegetation, is critical to predicting future changes in these dynamic systems.  相似文献   

13.
Plant species diversity and endemism demonstrate a definite trend along altitude. We analyzed the (i) pattern of tree diversity and its endemic subset (ii) frequency distribution of altitudinal range and (iii) upper & lower distributional limits of each tree species along altitudinal gradients in eastern Himalaya. The study was conducted in Subansiri district of Arunachal Pradesh. Data on the tree species (cbh ≥ 15 cm) were gathered every 200 m steps between 200 m and 2200 m gradients. Tree diversity demonstrated a greater variation along the gradients. A total of 336 species (of which 26 are endemic) were recorded belonging to 185 genera and 78 families. The alpha diversity demonstrated a decreasing pattern with two maxima (i.e., elevational peaks) along the gradients; one in 601–1000 m and the other in 1601–1800 m, corresponding to transition zones between tropical-subtropical and subtropical-temperate forests. Pattern diversity revealed a narrow range along the gradients. Frequency of altitudinal range was distributed between 1 and 41. Only one species (Altingia excelsa) showed widest amplitude, occurring over the entire range. Highest level of species turnover was found in 400–600 m step at lower elevational limit whereas for upper elevational limit, the highest turn over was recorded between 800 and 1000 m. Tree diversity decreased and its endemic subset increased along the gradients. Two maximas in tree diversity pattern correspond to forest transition zones with subtropical-temperate transition is narrower than tropical-subtropical. The pattern observed here could be attributed to varied microclimates or environmental heterogeneity. If altitudinal amplitude of a species is considered as an aspect of its niche breadth, it is clear from these results that niche breadth in these organisms is in fact independent of the diversity of the assemblage in which they occur. This analysis calls for detailed floristic studies to determine the breadth of changes between adjacent forest types and details of local species richness in high diversity areas.  相似文献   

14.
Species from many different habitats are responding to recent climate change. Mountainous areas are of particular interest as they provide pronounced gradients and have experienced above-average temperature increases. Data from the beginning of the 20th century of both the upper and lower range limits of plants of the European Alps were updated a century later and analyzed in order to identify common trends and deviating patterns of shifts at opposing ends of species’ ranges. At the upper limit, there was a strong trend towards an increase in species richness per summit, including 33 species that were recorded for the first time on any of the investigated summit areas. The species experienced a consistent upward shift exceeding 100 elevational meters, and 49 out of the 125 investigated species shifted upwards to a present altitude which is higher than any reported occurrence in the region one century ago. The response at the lower range limit was more heterogeneous and suggests species-specific differences in responsiveness and response patterns. With this approach of the combined analysis of upper and lower range limits along elevational gradients, it is possible to identify candidate species that might not keep pace with climate change, and thus, might face an increased risk of extinction with continued global warming.  相似文献   

15.
Cover          下载免费PDF全文
ON THE COVER: The kelp Pleurophycus gardneri in the lower intertidal of Tatoosh Island with a stipe burrow made by amphipods. Amphipod burrows reduce the lifespan of Pleurophycus and thus the response of Pleurophycus to ocean climate indicators is mediated by amphipods. Photo credit: C. Pfi ster. [Vol. 54, No. 1, pp. 1–11 ]  相似文献   

16.
Thermal stress has been considered to be among the most important determinants of organismal distribution in the rocky intertidal zone. Yet our understanding of how body temperatures experienced under field conditions vary in space and time, and of how these temperatures translate into physiological performance, is still rudimentary. We continuously monitored temperatures at a site in central California for a period of two years, using loggers designed to mimic the thermal characteristics of mussels, Mytilus californianus. Model mussel temperatures were recorded on both a horizontal and a vertical, north-facing microsite, and in an adjacent tidepool. We periodically measured levels of heat shock proteins (Hsp70), a measure of thermal stress, from mussels at each microsite. Mussel temperatures were consistently higher on the horizontal surface than on the vertical surface, and differences in body temperature between these sites were reflected in the amount of Hsp70. Seasonal peaks in extreme high temperatures ("acute" high temperatures) did not always coincide with peaks in average daily maxima ("chronic" high temperatures), suggesting that the time history of body temperature may be an important factor in determining levels of thermal stress. Temporal patterns in body temperature during low tide were decoupled from patterns in water temperature, suggesting that water temperature is an ineffective metric of thermal stress for intertidal organisms. This study demonstrates that spatial and temporal variability in thermal stress can be highly complex, and "snapshot" sampling of temperature and biochemical indices may not always be a reliable method for defining thermal stress at a site.  相似文献   

17.
Aim We compared vegetation patterns at high elevation on a tropical mountain with edaphic properties and position along climate gradients to examine this landscape’s potential sensitivity to climate change. Location Our study covers the cloud forest, the ecotone at the cloud forest’s upper limit, and the alpine grassland, on the north‐east corner of windward Haleakalā, Hawai‘i. The study area brackets the mean trade wind inversion (TWI), encompasses a perpendicular, east–west precipitation gradient and includes multiple edaphic contexts. Methods We collected vegetation structure and composition data in 134 plots from 1900 to 2400 m elevation, stratified east to west. We used classification trees to compare species assemblage groups with spatial (elevation, easting, aspect) and edaphic (substrate age, texture, degree slope) variables derived from a 10‐m digital elevation model and a digital geological map. Results The forest line was physiognomically sharp, and a Shipley–Keddy test showed that species distributional limits were aggregated there. Forest line elevation was not consistent, but dropped nearly 200 m from east to west. Indicator taxa for positions above or below the forest line varied from east to west. Hierarchical clustering identified species assemblage groups with significantly different composition that were distributed across the TWI and/or along east–west climate gradients. Classification trees showed that edaphic properties were not well associated with species assemblage groups, but position along two perpendicular climate gradients was. Compositional turnover was detected along both elevational and east–west gradients. Turnover of the cloud forest’s epiphytic community was particularly pronounced across east–west gradients. Lichen abundance was significantly higher at the drier end of the east–west moisture gradient, and bryophyte abundance was higher at the wetter end. Main conclusions Modern spatial patterns suggest that this landscape will respond to changes in moisture balance through changes in species assemblage and structure, especially at the ecotone. Furthermore, ecotone response to climate change may vary from east to west because of differences in species‐specific constraints or climatic context.  相似文献   

18.
Mount Pinatubo, Philippines (15.14°N, 120.35°E) erupted violently in 1991 to initiate significant primary succession. Aspect, the direction faced by a slope, affects patterns of vegetation at higher latitudes, but such effects remain unreported in the wet tropics. Therefore, we monitored species composition and cover in established plots during 2006, 2010, and 2013 to characterize how aspect affected primary succession. We used redundancy analysis (RDA) to assess vegetation change in response to time and environmental factors. Vegetation cover increased from 153 to 245% on north-facing slopes, and from 174 to 230% in south-facing slopes while species richness and diversity indices also increased. From 38 to 63% of the species were restricted to one aspect, depending on the year of study. Redundancy analysis demonstrated that aspect strongly affected species composition and that its effects persist. Fabaceae was concentrated on south-facing slopes, which suggested that aspect effects might be accentuated due to enhanced soil nitrogen. Vines, grasses, and forbs, all typical of habitats with greater insolation, were more abundant on south aspects, while trees and ferns were more common on the north aspects. This is the first survey of vegetation dynamics using permanent plots on new volcanic surfaces in this region. Aspect differences produced distinct insolation and moisture patterns that enhanced habitat diversity and altered species composition. This effect has not been noted in monsoon forests. Aspect may continue to initiate divergence in succession trajectories as soils and vertical canopy structure develop differentially in response to differential dominance.  相似文献   

19.
Spatial patterns of understory plant distribution can reflect availability of suitable abiotic microsites. Hydrastis canadensis is a native, herbaceous perennial whose distribution may be constrained by microsite availability. We planted 5 transects each on south- and north-facing cove hillsides with clonally derived rhizomes of H. canadensis. Transects were spaced 20, 40, 60, 80, and 100 m from a third-order stream. Because the transect 20 m from the stream on the south-facing hillside was adjacent to a natural H. canadensis patch, this transect was postulated to represent suitable habitat. We tested the effects of aspect and distance from stream on phytometer growth measures (survival, leaf area, and both rhizome and leaf area relative growth rates). We also monitored temperature, humidity, and light, then quantified environmental distances for these measures between each transect location and the transect in suitable habitat. Plant growth measures were then regressed on these distances to test hypotheses about factor effects. Neither survival nor relative growth rates depended on aspect or distance from the stream, although leaf area was greater on the north-facing aspect in both years and increased with proximity to the stream in 2003. Rhizome relative growth rate did not depend on any of the environmental distance measures, although leaf area change depended on cumulative light, increasing as the environmental distance from the suitable site increased. The relatively weak association between environmental variation across the forested cove reinforces other studies suggesting that H. canadensis has a relatively broad ecological niche, and its rarity is unlikely due to lack of availability of suitable habitat.  相似文献   

20.
基于树轮年代学方法,利用普达措国家公园海拔上、下限丽江云杉(Picea likiangensis)和长苞冷杉(Abies georgei)树轮宽度资料,构建差值年表并分析其与温度和降水的关系,阐明影响该区域2个主要针叶树种径向生长的主要气候要素。结果表明:(1)海拔下限丽江云杉径向生长同时受到温度和降水的影响:与上年11月平均温、当年生长季后期(9—10月)平均温和上年7月降水呈显著正相关;(2)海拔上限丽江云杉径向生长只受温度影响,与上年生长季后期平均温呈显著负相关,与当年生长季盛期(6—8月)平均温呈显著正相关;(3)长苞冷杉径向生长只与温度表现出显著相关性,海拔下限的生长与上年11月平均温呈显著正相关,海拔上限的生长与当年生长季盛期平均温呈显著正相关。结果可为气候变化对滇西北高原树木生长影响研究提供参考,为滇西北高原森林生态系统管理与保护提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号