首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To investigate roles of quorum‐sensing (QS) system in Acinetobacter sp. strain DR1 and rifampicin‐resistant variant (hereinafter DR1R). Methods and Results: The DR1 strain generated three putative acyl homoserine lactones (AHLs), while the DR1R produced only one signal and QS signal production was abrogated in the aqsI (LuxI homolog) mutant. The hexadecane‐degradation and biofilm‐formation capabilities of DR1, DR1R, and aqsI mutants were compared, along with their proteomic data. Proteomics analysis revealed that the AHL lactonase responsible for degrading QS signal was highly upregulated in both DR1R and aqsI mutant, also showed that several proteins, including ppGpp synthase, histidine kinase sensors, might be under the control of QS signalling. Interestingly, biofilm‐formation and hexadecane‐biodegradation abilities were reduced more profoundly in the aqsI mutant. These altered phenotypes of the aqsI mutant were restored via the addition of free wild‐type cell supernatant and exogenous C12‐AHL. Conclusions: The QS system in strain DR1 contributes to hexadecane degradation and biofilm formation. Significance and Impact of the Study: This is the first report to demonstrate that a specific QS signal appears to be a critical factor for hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1.  相似文献   

2.
Horizontal gene transfer by natural genetic transformation in Acinetobacter sp. strain BD413 was investigated by using gfp carried by the autonomously replicating plasmid pGAR1 in a model monoculture biofilm. Biofilm age, DNA concentration, and biofilm mode of growth were evaluated to determine their effects on natural genetic transformation. The highest transfer frequencies were obtained in young and actively growing biofilms when high DNA concentrations were used and when the biofilm developed during continuous exposure to fresh medium without the presence of a significant amount of cells in the suspended fraction. Biofilms were highly amenable to natural transformation. They did not need to advance to an optimal growth phase which ensured the presence of optimally competent biofilm cells. An exposure time of only 15 min was adequate for transformation, and the addition of minute amounts of DNA (2.4 fg of pGAR1 per h) was enough to obtain detectable transfer frequencies. The transformability of biofilms lacking competent cells due to growth in the presence of cells in the bulk phase could be reestablished by starving the noncompetent biofilm prior to DNA exposure. Overall, the evidence suggests that biofilms offer no barrier against effective natural genetic transformation of Acinetobacter sp. strain BD413.  相似文献   

3.
A diesel-oil and n-hexadecane-degrading novel bacterial strain, designated DR1T, was isolated from a rice paddy in Deok-So, South Korea. The strain DR1T cells were Gram-negative, aerobic coccobacilli, and grew at 20–37°C with the optimal temperature of 30°C, and an optimal pH of 6–8. Interestingly, strain DR1T was highly motile (swimming and swarming motility) using its fimbriae, and generated N-acyl homoserine lactones as quorum-sensing signals. The predominant respiratory quinone as identified as ubiquinone-9 (Q-9) and DNA G+C content was 41.4 mol%. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species A. calcoaceticus, A. haemolyticus, A. baumannii, A. baylyi, and A. beijerinckii, with which it evidenced sequence similarities of 98.2%, 97.4%, 97.2%, 97.1%, and 97.0%, respectively. DNA-DNA hybridization values between strain DR1T and other Acinetobacter spp. were all less than 20%. The physiological and taxonomic characteristics with the DNA-DNA hybridization data supported the identification of strain DR1T in the genus Acinetobacter as a novel species, for which the name Acinetobacter oleivorans sp. nov. is proposed. The type strain is DR1T (=KCTC 23045T =JCM 16667T).  相似文献   

4.
Summary A segment of DNA encoding incompatibility on the inc P-1 plasmid pRK248 was identified by the analysis of deletions generated in vitro, and then cloned into several unrelated and mutually compatible plasmids. These derivatives were tested for expression of P-1 incompatibility. It was demonstrated by transformation experiments that P-1 plasmids were efficiently eliminated from an E. coli host following introduction of any one of the derivatives. However, all the derivatives were compatible with each other. The cloned segment of pRK248 DNA is itself capable of autonomous replication, without being cloned into any plasmid, if plasmid-specified gene products are provided in trans. This satellite plasmid is eliminated from the cell by the inc P-1 plasmid pRK286. The results argue against a partitioning mechanism as the basis for P-1 incompatibility but are consistent with incompatibility being the consequence of negative regulation of copy number. For the inc P-1 system, susceptibility of the plasmid to elimination, but not its ability to eliminate, requires that the P-1 replication system is active.  相似文献   

5.
Two techniques, electroporation and conjugation, have been used to introduce the RK2-based broad-host-range plasmids pRK415 and pLAFR3 into strains of the bacterial genus Acidiphilium. Using electroporation, cells were also transformed with a series of chimeric plasmids constructed by cloning cryptic Acidiphilium plasmids into the Escherichia coli vector pBR328. Various parameters affecting electroporation were investigated. Transformation efficiency varied widely with different recipient strains. Growth at an elevated temperature (37 degrees C) prior to electroporation increased transformation efficiency 10-fold compared with growth at 32 degrees C. For three strains tested, optimum transformation efficiency was obtained with field strengths of 10-15 kV/cm. Transformation efficiency increased linearly with increasing DNA concentration up to 10 micrograms/mL. Transformation efficiencies in these experiments ranged up to 10(4) transformants/micrograms DNA. Mobilization of pRK415 and pLAFR3 from E. coli strain S17.1 into several Acidiphilium strains was achieved following incubation for 3 h on nutrient agar medium (pH 7.0). Conjugation frequencies in the range of 10(-5)-10(-9) per recipient cell were obtained. Conjugation frequency was also dependent on recipient strain.  相似文献   

6.
Three indigenous plasmids designated pRK1, pRK2 and pRK3 were identified among producers of penicillin G acylase, (PGA) derived from the strainEscherichia coli W ATCC 9637. Their size and copy number (CN) inE. coli W were determined (kb; CN); pRK1 (80; 3.4), pRK2 (5.1; 71), and pRK3 (4.8; 13.7). StrainE. coli RE2 harboring these plasmids was used for selection of strains with reduced number of plasmids: the strain RE3 without plasmid pRK1 and the plasmid-less strain cERE3 were isolated. Indigenous plasmids did not code for the resistance determinants against 23 antibiotics and 10 heavy metals.  相似文献   

7.
The hexadecane degradation of Acinetobacter oleivorans DR1 was evaluated with changes in temperature and ionic salt contents. Hexadecane degradation of strain DR1 was reduced markedly by the presence of sodium chloride (but not potassium chloride). High temperature (37°C) was also shown to inhibit the motility, biofilm formation, and hexadecane biodégradation. The biofilm formation of strain DR1 on the oil-water interface might prove to be a critical physiological feature for the degradation of hexadecane. The positive relationship between biofilm formation and hexadecane degradation could be observed at 30° C, but not at low temperatures (25°C). Alterations in cell hydrophobicity and EPS production by temperature and salts were not correlated with biofilm formation and hexadecane degradation. Our proteomic analyses have demonstrated that metabolic changes through the glyoxylate pathway are important for efficient degradation of hexadecane. Proteins involved in fatty acid metabolism, gluconeogenesis, and oxidative stress defense proteins appear to be highly expressed during biodégradation of hexadecane. These results suggested that biofilm formation and oxidative stress defense are important physiological responses for hexadecane degradation along with metabolic switch to glyoxylate pathway in strain DR1.  相似文献   

8.
The DNA region essential for replication and stability of a native plasmid (pTM5) from Rhizobium sp. (Hedysarum) has been identified and isolated within a 5.4-kb PstI restriction fragment. The isolation of this region was accomplished by cloning endonuclease-restricted pTM5 DNA into a ColE1-type replicon and selecting the recombinant plasmids containing the pTM5 replicator (pTM5 derivative plasmids) by their ability to replicate in Rhizobium. DNA homology studies revealed that pTM5-like replicons are present in cryptic plasmids from some Rhizobium sp. (Hedysarum) strains but not in plasmids from strains of other Rhizobium species or Agrobacterium tumefaciens. The pTM5 derivative plasmids were able to replicate in Escherichia coli and A. tumefaciens and in a wide range of Rhizobium species. On the basis of stability assays in the absence of antibiotic selective pressure, the pTM5 derivative plasmids were shown to be highly stable in both free-living and symbiotic cells of Rhizobium sp. (Hedysarum). The stability of these plasmids in other species of Rhizobium and in A. tumefaciens varied depending on the host and on the plasmid. Most pTM5 derivative plasmids tested showed significantly higher symbiotic stability than RK2 derivative plasmids pRK290 and pAL618 in Rhizobium sp. (Hedysarum), R. meliloti, and R. leguminosarum bv. phaseoli. Consequently, we consider that the constructed pTM5 derivative plasmids are potentially useful as cloning vectors for Rhizobiaceae.  相似文献   

9.
The genus Acinetobacter is ubiquitous in soil, aquatic, and sediment environments and includes pathogenic strains, such as A. baumannii. Many Acinetobacter species isolated from various environments have biotechnological potential since they are capable of degrading a variety of pollutants. Acinetobacter sp. strain DR1 has been identified as a diesel degrader. Here we report the complete genome sequence of Acinetobacter sp. DR1 isolated from the soil of a rice paddy.The genus Acinetobacter appears to be metabolically versatile and has the ability to degrade aliphatic hydrocarbon, thus making it an organism of interest for its possible bioremediational potential (9). Despite its biotechnological potential, the majority of genome projects conducted with Acinetobacter species have focused on pathogenic strains of A. baumannii. Currently, the only available whole-genome sequence of environmental isolates is that of A. baylyi ADP1 (2). Acinetobacter sp. strain DR1 was isolated from the soil of rice paddies, located in Deok-So (Korea University Agricultural Station), in the Kyonggi province of South Korea. Strain DR1 is capable of utilizing aliphatic hydrocarbons and diesel oil (5). Similarly to A. baylyi ADP1, this strain is also competent for natural transformation. We demonstrated previously that sodium chloride added to the medium induces the overproduction of exopolysaccharide (EPS), which evidences protective activity against diesel toxicity (4). Interestingly, DR1 possesses a quorum sensing (QS) system, which has been shown to play a significant role in biofilm formation and hexadecane biodegradation. The results of proteomic studies have demonstrated that the QS system regulates a broad variety of proteins (6). Collectively, our findings demonstrate that DR1 has profound potential for environmental applications and is an environmental isolate distinct from pathogenic strains, thus indicating that the whole-genome sequencing of DR1 is a worthwhile pursuit.Initial pyrosequencing using a GS-FLX system (454 Life Science Corporation) generated 652,162 reads (264,482,836 nucleotides; 64.3-fold coverage), which were assembled into 56 contigs. To determine the order of the contigs, 1,248 fosmid clones were constructed with an average insert size of 35 kb (10.5-fold coverage). The fosmid-end sequencing of 936 clones generated 1,372,452 bp. These high-quality Sanger reads allowed the assembly of 41 large contigs into 2 scaffolds containing 38 gaps. The gaps were filled via primer walking. All procedures for genome sequencing and gap filling were conducted by Macrogen (Seoul, South Korea). Protein coding regions were predicted with the GLIMMER3 software program (3), and automatic genome annotation was conducted on a RAST server (1) and the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP). The tRNA and rRNA genes were annotated using the tRNAScan-SE (8) and RNAmmer software programs (7), respectively. The genome of Acinetobacter sp. DR1 consists of a circular 4,152,543-bp chromosome with a G+C content of 38%, 3,874 predicted coding sequences, and 71 tRNAs. There are 6 rRNA operons with a 16S, tRNA-Ile, tRNA-Ala, 23S, 5S organization. The genes studied previously were clearly identified via genome sequencing (4, 5, 6). The availability of the complete genome sequence of Acinetobacter sp. strain DR1 will contribute to an in-depth understanding of the genetic potentials of Acinetobacter species.  相似文献   

10.
Candida albicans is a major human fungal pathogen causing mucosal and deep tissue infections of which the majority is associated with biofilm formation on medical implants. Biofilms have a huge impact on public health, as fungal biofilms are highly resistant against most antimycotics. Animal models of biofilm formation are indispensable for improving our understanding of biofilm development inside the host, their antifungal resistance and their interaction with the host immune defence system. In currently used models, evaluation of biofilm development or the efficacy of antifungal treatment is limited to ex vivo analyses, requiring host sacrifice, which excludes longitudinal monitoring of dynamic processes during biofilm formation in the live host. In this study, we have demonstrated for the first time that non‐invasive, dynamic imaging and quantification of in vitro and in vivo C. albicans biofilm formation including morphogenesis from the yeast to hyphae state is feasible by using growth‐phase dependent bioluminescent C. albicans strains in a subcutaneous catheter model in rodents. We have shown the defect in biofilm formation of a bioluminescent bcr1 mutant strain. This approach has immediate applications for the screening and validation ofantimycotics under in vivo conditions, for studying host–biofilm interactions in different transgenic mouse models and for testing the virulence of luminescent C. albicans mutants, hereby contributing to a better understanding of the pathogenesis of biofilm‐associated yeast infections.  相似文献   

11.
Plasmid transfers among bacterial populations can directly influence the ecological adaptation of these populations and their interactions with host species and environment. In this study, we developed a selective multiply‐primed rolling circle amplification (smRCA) approach to enrich and characterize circular plasmid DNA from sponge microbial symbionts via high‐throughput sequencing (HTS). DNA (plasmid and total community DNA) obtained from sponge (Cinachyrella sp.) samples and a bacterial symbiont (Vibrio sp. CyArs1) isolated from the same sponge species (carrying unknown plasmids) were used to develop and validate our methodology. The smRCA was performed during 16 hr with 141 plasmid‐specific primers covering all known circular plasmid groups. The amplified products were purified and subjected to a reamplification with random hexamer primers (2 hr) and then sequenced using Illumina MiSeq. The developed method resulted in the successful amplification and characterization of the sponge plasmidome and allowed us to detect plasmids associated with the bacterial symbiont Vibrio sp. CyArs1 in the sponge host. In addition to this, a large number of small (<2 kbp) and cryptic plasmids were also amplified in sponge samples. Functional analysis identified proteins involved in the control of plasmid partitioning, maintenance and replication. However, most plasmids contained unknown genes, which could potentially serve as a resource of unknown genetic information and novel replication systems. Overall, our results indicate that the smRCA‐HTS approach developed here was able to selectively enrich and characterize plasmids from bacterial isolates and sponge host microbial communities, including plasmids larger than 20 kbp.  相似文献   

12.
The nucleotide sequence of a smallest cryptic plasmid pRK10 of Serratia marcescens ACE2 was determined. When compared to the all other plasmids reported so far from S. marcescens in sizes of over 70 kb, pRK10 is only 4241 bp long with 53% G + C content and has five coding sequences representing a coding percentage of 65.41. This small plasmid consists of one Tdh gene, four mobilization genes, mobCABD, and an origin of replication homologous to those of ColE1-type plasmids. Analysis of the five open reading frames identified on the plasmid suggests the presence of genes involved in replication and mobilization containing sequences homologous to the bom region and mobCABD genes of ColE1 and Tdh from Acinetobacter baumannii str. AYE. Results also indicate that pRK10 does not encode any gene for antibiotic/heavy metal resistance. Copy number and incompatibility of the plasmid with plasmids of ColE1 origin of replication was determined and it is quite stable in its natural host as well as in Escherichia coli DH5α. This relatively small plasmid will be useful for construction of shuttle vectors to facilitate the genetic analysis.  相似文献   

13.
A gene (comC) essential for natural transformation was identified in Acinetobacter sp. strain BD413. ComC has a typical leader sequence and is similar to different type IV pilus assembly factors. A comC mutant (T308) is not able to bind or take up DNA but exhibits a piliation phenotype indistinguishable from the transformation wild type as revealed by electron microscopy.  相似文献   

14.
Rifampicin, a bactericidal antibiotic drug, is routinely used to make an environmental recipient selective in laboratory‐conjugation experiments. We noticed, inadvertently, that the rifampicin‐resistant Acinetobacter sp. strain DR1, a recently discovered hexadecane‐degrading environmental isolate, exhibited a substantial loss of quorum sensing signalling. The domesticated ampicillin‐resistant strain, DR1, evidenced more dramatic phenotypic changes than were observed in the rifampicin‐resistant cells: a complete loss of quorum sensing, a loss in swimming and swarming motilities, poor fimbrial expression, increased rigidity in membrane fatty acid composition and reduced hexadecane degradation capability. Interestingly, the motility of strain DR1 grown adjacent to a streptomycin‐producing Streptomyces griceus was permanently abrogated, where this change was heritable and other phenotypic changes could not be detected. In this study, we have reported for the first time that the in situ acquisition of antibiotic resistance may reduce biological fitness, including losses in the production of quorum sensing signals, motility and substrate utilization, and each antibiotic is associated with different degrees of phenotypic and genetic alterations. Our data also suggested that the domestication of environmental isolates should be approached with caution, as there are phenotypic variations in antibiotic‐resistant cells that might not be noticeable unless all possible phenotypic assays are conducted.  相似文献   

15.
Cyanuric acid (1,3,5-triazine-2,4,6-triol [OOOT]) is a common biodegradation byproduct of triazinic herbicides, frequently accumulated in soils or water when supplementary carbon sources are absent. A binary bacterial culture able to degrade OOOT was selected through a continuous selection process accomplished in a chemostat fed with a mineral salt (MS) medium containing cyanuric acid as the sole carbon and nitrogen source. By sequence comparison of their 16S rDNA amplicons, bacterial strains were identified as Agrobacterium tumefaciens, and Acinetobacter sp. When the binary culture immobilized in a packed bed reactor (PBR) was fed with MS medium containing OOOT (50 mg L−1), its removal efficiencies were about 95%; when it was fed with OOOT plus glucose (120 mg L−1) as a supplementary carbon source, its removal efficiencies were closer to 100%. From sessile cells, attached to PBR porous support, or free cells present in the outflowing medium, DNA was extracted and used for Random Amplification of Polymorphic DNA analysis. Electrophoretic patterns obtained were compared to those of pure bacterial strains, a clear predominance of A. tumefaciens in PBR was observed. Although in continuous suspended cell culture, a stable binary community could be maintained, the attachment capability of A. tumefaciens represented a selective advantage over Acinetobacter sp. in the biofilm reactor, favoring its predominance in the porous stone support.  相似文献   

16.
Using minimal salts medium containing vitamins and pyruvate (MSVP) plus added manganese sulfate, a manganese (II) oxidizing bacterial strain was isolated from water samples of a biofiltration system treating borehole water in KwaZulu‐Natal, South Africa. The nonmotile Gram‐negative and oxidase‐negative isolate was subsequently characterized microbiologically. Based on its morphological and physiological characteristics and on the analysis of its 16S rRNA gene sequence, the isolate was assigned to the genus Acinetobacter. Growth of the isolated strain in MSVP with added manganese sulfate gave rise to a drop in pH and a concomitant increase in oxidation–reduction potential, which was absent in controls, thus indicating manganese oxidation. The ability of Acinetobacter sp. strain LB1 to oxidize Mn (II) was further verified using the leucoberbelin blue dye assay as well as by energy dispersive X‐ray analysis of crystals formed in the medium. In addition, a biofilm assay indicated that this isolate can attach to solid surfaces such as a biofilter matrix, thus confirming its potential for biotechnological applications in the area of water purification.  相似文献   

17.
To elucidate the biological significance of dead bacterial cells in soil to the intra- and interspecies transfer of gene fragments by natural transformation, we have exposed the kanamycin-sensitive recipient Acinetobacter sp. strain BD413(pFG4) to lysates of the kanamycin-resistant donor bacteria Acinetobacter spp., Pseudomonas fluorescens, and Burkholderia cepacia. Detection of gene transfer was facilitated by the recombinational repair of a partially (317 bp) deleted kanamycin resistance gene in the recipient bacterium. The investigation revealed a significant potential of these DNA sources to transform Acinetobacter spp. residing both in sterile and in nonsterile silt loam soil. Heat-treated (80°C, 15 min) cell lysates were capable of transforming strain BD413 after 4 days of incubation in sterile soil and for up to 8 h in nonsterile soil. Transformation efficiencies obtained in vitro and in situ with the various lysates were similar to or exceeded those obtained with conventionally purified DNA. The presence of cell debris did not inhibit transformation in soil, and the debris may protect DNA from rapid biological inactivation. Natural transformation thus provides Acinetobacter spp. with an efficient mechanism to access genetic information from different bacterial species in soil. The relatively short-term biological activity (e.g., transforming activity) of chromosomal DNA in soil contrasts the earlier reported long-term physical stability of DNA, where fractions have been found to persist for several weeks in soil. Thus, there seems to be a clear difference between the physical and the functional significance of chromosomal DNA in soil.  相似文献   

18.
Quantitative detection of the oil-degrading bacterium Acinetobacter sp. strain MUB1 was performed using the SoilMaster DNA Extraction Kit (Epicentre, Madison, Wisconsin) and hybridization probe based real-time PCR. The detection target was the alkane hydroxylase gene (alkM). Standard curve construction showed a linear relation between log values of cell concentrations and real-time PCR threshold cycles over five orders of magnitude between 5.4±3.0×106 and 5.4±3.0×102 CFU ml−1 cell suspension. The detection limit was about 540 CFU ml−1, which was ten times more sensitive than conventional PCR. The quantification of Acinetobacter sp. strain MUB1 cells in soil samples resulted in 46.67%, 82.41%, and 87.59% DNA recovery with a detection limit of 5.4±3.0×104 CFU g−1 dry soil. In this study, a method was developed for the specific, sensitive, and rapid quantification of the Acinetobacter sp. strain MUB1 in soil samples.  相似文献   

19.
To explore the functional role of the antagonistic producer strain Streptomyces dendra sp. nov. MSI051 in the host sponge Dendrilla nigra, hypothetical factors including the antagonistic potential of MSI051 against biofilm bacteria and a ubiquitous defense enzyme phospholipase A2 (PLA2) in host sponge as well as in bacterial symbiont MSI051 were determined. The host sponge D. nigra and associated bacterial symbiont MSI051 contained high levels of PLA2. The host sponge showed PLA2 activity to the extent of 1032 U/L, with a specific activity of 2021 U/g, and strain MSI051 showed similar activity. The findings of the present study suggest that PLA2 in the sponge-associated bacteria might have an integrated functional role in the host defense system of marine sponges. This report may be the first on the role of PLA2 activity in sponge-associated bacteria. Isolate MSI051 was a potential antagonistic producer which showed a broad spectrum of antibacterial activity. Polyketide synthase gene type II in MSI051 ultimately evidenced the antagonistic potential. Antimicrobial activity was found to be positively skewed toward biofilm bacteria. This implies a functional role of MSI051 in the protection of host sponge against fouling processes.  相似文献   

20.
Horizontal gene transfer by natural genetic transformation in Acinetobacter sp. strain BD413 was investigated by using gfp carried by the autonomously replicating plasmid pGAR1 in a model monoculture biofilm. Biofilm age, DNA concentration, and biofilm mode of growth were evaluated to determine their effects on natural genetic transformation. The highest transfer frequencies were obtained in young and actively growing biofilms when high DNA concentrations were used and when the biofilm developed during continuous exposure to fresh medium without the presence of a significant amount of cells in the suspended fraction. Biofilms were highly amenable to natural transformation. They did not need to advance to an optimal growth phase which ensured the presence of optimally competent biofilm cells. An exposure time of only 15 min was adequate for transformation, and the addition of minute amounts of DNA (2.4 fg of pGAR1 per h) was enough to obtain detectable transfer frequencies. The transformability of biofilms lacking competent cells due to growth in the presence of cells in the bulk phase could be reestablished by starving the noncompetent biofilm prior to DNA exposure. Overall, the evidence suggests that biofilms offer no barrier against effective natural genetic transformation of Acinetobacter sp. strain BD413.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号