首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alkalopsychrotrophic strain, Micrococcus sp. 207, inducibly and extracellularly produced amylase and pullulanase. The main hydrolysis product from amylose, with a crude enzyme preparation, was maltotetraose. The optimum temperature for activity of the amylase was 60°C and that for pullulanase 55°C. The activities at 0 to 30°C exhibited similar activation energy values. In an optimized production medium at pH 9.7, the highest yields of these enzymes were obtained after cell growth at 18°C for 4 days. At pH 8.5, the yields of amylase and pullulanase became maximum after 3 days cultivation. With more prolonged cultivation, the yield of amylase but not that of pullulanase activity decreased. These enzymes were not produced at temperatures above 30°C. Sucrose was not effective as an inducer, but it stimulated cell growth and enhanced the enzyme productivities with soluble starch.  相似文献   

2.
Thermostable β-amylase and pullulanase, secreted by the thermophilic anaerobic bacterium Clostridium thermosulfurogenes strain SV2, were purified by salting out with ammonium sulphate, DEAE-cellulose column chromatography, and gel filtration using Sephadex G-200. Maltose was identified as a major hydrolysis product of starch by β-amylase, and maltotriose was identified as a major hydrolysis product of pullulan by pullulanase. The molecular masses of native β-amylase and pullulanase were determined to be 180 and 100 kDa by gel filtration, and 210 and 80 kDa by SDS–PAGE, respectively. The temperature optima of purified β-amylase and pullulanase were 70 and 75°C, respectively, and both enzymes were completely stable at 70°C for 2h. The presence of starch further increased the stability of both the enzymes to 80°C and both displayed a pH activity optimum of 6.0. The starch hydrolysis products formed by β-amylase action had β-anomeric form.  相似文献   

3.
A strain of starch-assimilating yeast,Saccharomycopsis capsularis, isolated from Indian cereal-based fermented foods, produced significant levels of extracellular α-amylase and glucoamylase. The enzymes reached their peak activities during the stationary phase at the end of the 5th and 4th day of cultivation, respectively. The amylase yields were maximized by a proper choice of carbon and nitrogen sources, starting pH of the culture medium and growth temperature. High activities of the enzymes were obtained through inexpensive agricultural commodities, such as wheat bran and corn meal as carbon sources, and defatted soybean meal and peanut meal as nitrogen sources. A temperature of 28–32°C and an initial pH of 4.5–5.0 were optimum. The crude amylase mixture could liquefy and saccharify a 1% starch solution completely in 24 h at 50°C.  相似文献   

4.

Key message

Heterologous expression of amylopullulanase in maize seeds leads to partial starch degradation into fermentable sugars, which enhances direct bioethanol production from maize grain.

Abstract

Utilization of maize in bioethanol industry in the United States reached ±13.3 billion gallons in 2012, most of which was derived from maize grain. Starch hydrolysis for bioethanol industry requires the addition of thermostable alpha amylase and amyloglucosidase (AMG) enzymes to break down the α-1,4 and α-1,6 glucosidic bonds of starch that limits the cost effectiveness of the process on an industrial scale due to its high cost. Transgenic plants expressing a thermostable starch-degrading enzyme can overcome this problem by omitting the addition of exogenous enzymes during the starch hydrolysis process. In this study, we generated transgenic maize plants expressing an amylopullulanase (APU) enzyme from the bacterium Thermoanaerobacter thermohydrosulfuricus. A truncated version of the dual functional APU (TrAPU) that possesses both alpha amylase and pullulanase activities was produced in maize endosperm tissue using a seed-specific promoter of 27-kD gamma zein. A number of analyses were performed at 85 °C, a temperature typically used for starch processing. Firstly, enzymatic assay and thin layer chromatography analysis showed direct starch hydrolysis into glucose. In addition, scanning electron microscopy illustrated porous and broken granules, suggesting starch autohydrolysis. Finally, bioethanol assay demonstrated that a 40.2 ± 2.63 % (14.7 ± 0.90 g ethanol per 100 g seed) maize starch to ethanol conversion was achieved from the TrAPU seeds. Conversion efficiency was improved to reach 90.5 % (33.1 ± 0.66 g ethanol per 100 g seed) when commercial amyloglucosidase was added after direct hydrolysis of TrAPU maize seeds. Our results provide evidence that enzymes for starch hydrolysis can be produced in maize seeds to enhance bioethanol production.  相似文献   

5.
A gene encoding amylopullulanase (gt-apu) of the extremely thermophilic Geobacillus thermoleovorans NP33 was cloned and expressed in Escherichia coli. The gene has an open reading frame of 4,965 bp that encodes a protein of 1,655 amino acids with molecular mass of 182 kDa. The six conserved regions, characteristic of GH13 family, have been detected in gt-apu. The recombinant enzyme has only one active site for α-amylase and pullulanase activities based on the enzyme kinetic analyses in a system that contains starch as well as pullulan as competing substrates and response to inhibitors. The end-product analysis confirmed that this is an endoacting enzyme. The specific enzyme activities for α-amylase and pullulanase of the truncated amylopullulanase (gt-apuT) are higher than gt-apu. Both enzymes exhibited similar temperature (60 °C) and pH (7.0) optima, although gt-apuT possessed a higher thermostability than gt-apu. The overall catalytic efficiency (K cat/K m) of gt-apuT is greater than that of gt-apu, with almost similar substrate specificities. The C-terminal region of gt-apu appeared to be non-essential, and furthermore, it negatively affects the substrate binding and stability of the enzyme.  相似文献   

6.
An α‐amylase and a glucoamylase produced by Thermomyces lanuginosus F1 were separated by ion‐exchange chromatography on Q‐Sepharose fast flow. The enzymes were further purified to electrophoretic homogeneity by chromatography on Sephadex G‐100 and Phenyl‐Sepharose CL‐4B.The molecular weights and isoelectric points of the enzymes were 55,000 Da and pHi 4.0 for α‐amylase and 70,000 Da and pHi 4.0 for glucoamylase, respectively. The optimum pH and temperatures for the enzymes were found to be 5.0 and 60 °C for α‐amylase, and 6.0 and 70 °C for glucoamylase,respectively. Both enzymes were maximally stable at pH 4.0 and retained over 80% of their activity between pH 5.0 and 6.0 for 24 h. After incubation at 90 °C (1 h), the α‐amylase and glucoamylase retained only 6% and 16% of their activity, respectively. The enzymes readily hydrolyzed soluble starch, amylose, amylopectin and glycogen but hydrolyzed pullulan very slowly. Glucoamylase and α‐amylase had highest affinity for soluble starch with KM values of 0.80 mg/ml and 0.67 mg/ml, respectively. The α‐amylase hydrolyzed raw starch granules with a predominant production of glucose and maltose. The activities of α‐amylase and glucoamylase increased in the presence of Mn2+, Co2+, Ca2+, Zn2+ and Fe2+, but were inhibited by guanidine‐HCl, urea and disodium EDTA. Both enzymes possess pH and thermal stability characteristics that may be of technological significance.  相似文献   

7.
Five strains of the extreme thermophilic Rhodothermus marinus were screened for the production of amylolytic and pullulytic activities. The culture medium for the selected strain, R. marinus ITI 990, was optimized using central composite designs for enhanced enzyme production. The optimized medium containing 1.5 gl(-1) of maltose and 8.3 gl(-1) of yeast extract yielded amylase, pullulanase and alpha-glucosidase activities of 45, 33 and 2.1 nkatml(-1), respectively. Among the various carbon sources tested, maltose was most effective for the formation of these enzymes, followed by soluble maize starch, glycogen and pullulan. The crude amylase and pullulanase showed maximum activities at pH 6.5-7.0, and 85 and 80 degrees C, respectively. At 85 degrees C amylase and pullulanase had half lives of 3 h and 30 min, respectively.  相似文献   

8.
Summary A new thermophilic Bacillus strain 3183 (ATCC 49341) was isolated from hot-spring sediments. The organism grew on pullulan as a carbon source and showed optimum pH and temperature at pH 5.5 and 62° C, respectively, for growth. The strain reduced nitrate to nitrite both aerobically and anaerobically. It produced extracellular thermostable pullulanase and saccharidase activities which degraded pullulan and starch into maltotriose, maltose, and glucose. Medium growth conditions for pullulanase production were optimized. The optimum pH and temperature for pullulanase activity were at pH 6.0 and 75° C, respectively. The enzyme was stable at pH 5.5-7.0 and temperature up to 70° C in the absence of substrate. The K m for pullulan at pH 6.0 and 75° C was 0.4 mg/ml. The pullulanase activity was stimulated and stabilized by Ca2+. It was inhibited by ethylenediaminetetraacetate (EDTA), beta and gamma-cyclodextrins but not by alpha-cyclodextrin and reagents that inhibit essential enzyme SH-groups. Offprint requests to: B. C. Saha  相似文献   

9.
There is a considerable potential of cold-active biocatalysts for versatile industrial applications. A psychrophilic bacterial strain, Shewanella arctica 40-3, has been isolated from arctic sea ice and was shown to exhibit pullulan-degrading activity. Purification of a monomeric, 150-kDa pullulanase was achieved using a five-step purification approach. The native enzyme was purified 50.0-fold to a final specific activity of 3.0 U/mg. The enzyme was active at a broad range of temperature (10–50 °C) and pH (5–9). Optimal activity was determined at 45 °C and pH 7. The presence of various metal ions is tolerated by the pullulanase, while detergents resulted in decreased activity. Complete conversion of pullulan to maltotriose as the sole product and N-terminal amino acid sequence indicated that the enzyme is a type-I pullulanase and belongs to rarely characterized pullulan-degrading enzymes from psychrophiles.  相似文献   

10.
Thermostable pullulanase was purified to homogeneity on sodium dodecyl sulfate-polyacrylamide gel from the culture supernatant of Bacillus stearothermophilus TRS128. However, multiformity of the pullulanase was suggested by activity staining on a pullulan-reactive red plate. The thermostability of the enzyme was tested. In the presence of Ca2+, the optimum temperature of the pullulanase was 75°C, and nearly 100% of the enzyme activity was retained even after treatment at 68°C for 60 min. Since the thermostable pullulanase gene (pulT) has been cloned, the nucleotide sequence was determined. Although the DNA sequence revealed only one large open reading frame, two possible pairs of SD sequence and initiation codon were found in the frame. To analyze the regulatory region, several mutations (deletion, insertion and substitution of nucleotides) were introduced in the flanking region of pulT, using site-directed mutagenesis. A putative promoter, SD sequence and initiation codon were inferred. The pulT gene was composed of 1974 bases and 658 amino acid residues (molecular weight 75,375). The deduced amino acid sequence of the thermostable pullulanase exhibited a fairly low homology with that of the thermolabile pullulanase from Klebsiella aerogenes. However, four consensus sequences containing catalytic and/or substrate binding sites for amylolytic enzymes were also found in the thermostable pullulanase and the thermolabile enzyme.  相似文献   

11.
A β-amylase and a pullulanase produced by Bacillus cereus var. mycoides were purified by means of ammonium sulfate fractionation, adsorption on starch and celite and Sephadex G–100 column chromatography. The purified enzymes were homogeneous in disc electrophoresis.

The β-amylase released only maltose from amylose, amylopectin, starch and glycogen, and the released maltose was in β-form. The pullulanase released maltose, maltotriose and maltotetraose from β-limit dextrin and maltotriose from pullulan, but not amylose-like substance from amylopectin.

The optimum pHs of β-amylase and pullulanase were about 7 and 6~6.5, respectively. The optimum temperatures of the enzymes were about 50°C. The enzymes were inhibited by the sulfhydryl reagents such as mercuric chloride and p-chloromercuribenzoate, and the inhibitions with p-chloromercuribenzoate were restored by the addition of cysteine. The molecular weights of β-amylase and pullulanase were estimated to be 35,000±5,000 and 110,000±20,000, respectively.  相似文献   

12.
The growth of a thermophilic Clostridium sp. and the production of α-glucosidase, α-amylase and pullulanase were studied under anaerobic conditions using different carbon and nitrogen sources and varying pH values and temperatures. Growth and enzyme activities were highest with soybean meal as the nitrogen source. The optimum concentration was 2.5% [w/v] for the production of α-amylase as well as pullulanase and 2% [w/v] for α-glucosidase. The best carbon source proved to be soluble starch for α-amylase, and pullulanase and maltose for α-glucosidase. Growth and enzyme production reached their optimum at pH 6.5 to 7.0 and 70°C. Under these conditions, the enzyme activities followed exponential growth with maximum yields of α-glucosidase, α-amylase and pullulanase at 28, 36, and 44 h.  相似文献   

13.
A bacterium that secretes maltooligosaccharide-forming amylase in a medium containing 12.5% (vol/vol) dimethylsulfoxide (DMSO) was isolated and identified as Brachybacterium sp. strain LB25. The amylase of the strain was purified from the culture supernatant, and its molecular mass was 60 kDa. The enzyme was stable at pH 7.0–8.5 and active at pH 6.0–7.5. The optimum temperature at pH 7.0 was 35°C in the presence of 5 mM CaCl2. The enzyme hydrolyzed starch to produce maltotriose primarily. The enzyme was active in the presence of various organic solvents. Its yield and product selectivity of maltooligosaccharides in the presence of DMSO or ethanol were compared with those of the industrial maltotriose-forming amylase from Microbacterium imperiale. Both enzymes improved the production selectivity of maltotriose by the addition of DMSO or ethanol. However, the total maltooligosaccharide yield in the presence of the solvents was higher for LB25 amylase than for M. imperiale amylase.  相似文献   

14.
The novel chitinolytic bacterium Clostridium beijerinckii strain JM2 was isolated from the stool of healthy volunteers supplied daily per orally with 3 g of chitosan. The bacterium grown on colloidal chitin produced a complete array of chitinolytic enzymes. Significant activities of endochitinase, exochitinase and chitosanase were excreted into the medium (301, 282 and 268 nkat/μg protein, respectively). The high cellular activity of N-acetyl-β-glucosaminidase (NAGase) and chitosanase were detected (732.4 and 154 nkat/μg protein, respectively). NAGase activity represented the main activity associated with the cellular fraction. The activities of both enzymes tested increased from 20 to 50 °C; the optimum reaction temperature estimated being 50 °C. Endochitinase as well as NAGase showed an activity in the pH interval of 4.0–8.0; the optimum pH values were 6.5 and 6.0, respectively. The extracellular endochitinase complex consisted of six isoenzymes with molar mass of 32–76 kDa; in the cellular fraction five bands with molar mass of 45–86 kDa were detected. Exochitinase activity was demonstrated in the form of three bands (with molar mass of 30–57 kDa), NAGase activity displayed one band of 45 kDa.  相似文献   

15.
Nine extremely thermophilic archaea and one novel thermophilic bacterium were screened for their ability to produce amylolytic and pullulytic enzymes. Cultivation of these micro-organisms was performed in the absence of elemental sulphur with starch as the major carbon source. Enzymatic activity was mainly detected in two archaea belonging to the order Thermoproteales,Desulfurococcus mucosus andStaphylothermus marinus, in two archaea belonging to the order Thermococcales,Thermococcus celer andT. litoralis and in two novel archaeal strains, TYS and TY previously isolated from the Guaymas Basin in the Gulf of California. Both amylolytic and pullulytic activities were also detected in a newly isolated thermophilic bacterium belonging to the order Thermotogales and previously described asFervidobacterium pennavorans. Best yields for enzyme production were obtained in 1–1 batch cultures with the strains TYS (13 units U/1 of amylase, 6 U/1 of pullulanase),F. pennavorans (2.5 U/l of amylase, 4.5 U/l of pullulanase) andT. litoralis (3.0 U/l of amylase). Enzymes were in general characterized by temperature optima around 90–100°C, pH optima around 5.5–6.5 and a high degree of thermostability. Due to the remarkable properties of these enzymes, they are of interest for biotechnological applications.  相似文献   

16.
Xanthomonas axonopodis pv. punicae strain—a potent plant pathogen that causes blight disease in pomegranate—was screened for cellulolytic and xylanolytic enzyme production. This strain produced endo-β-1,4-glucanase, filter paper lyase activity (FPA), β-glucosidase and xylanase activities. Enzyme production was optimized with respect to major nutrient sources like carbon and nitrogen. Carboxy methyl cellulose (CMC) was a better inducer for FPA, CMCase and xylanase production, while starch was found to be best for cellobiase. Soybean meal/yeast extract at 0.5 % were better nitrogen sources for both cellulolytic and xylanolytic enzyme production while cellobiase and xylanase production was higher with peptone. Surfactants had no significant effect on levels of extracellular cellulases and xylanases. A temperature of 28 °C and pH 6–8 were optimum for production of enzyme activities. Growth under optimized conditions resulted in increases in different enzyme activities of around 1.72- to 5-fold. Physico-chemical characterization of enzymes showed that they were active over broad range of pH 4–8 with an optimum at 8. Cellulolytic enzymes showed a temperature optimum at around 55 °C while xylanase had highest activity at 45 °C. Heat treatment of enzyme extract at 75 °C for 1 h showed that xylanase activity was more stable than cellulolytic activities. Xanthomonas enzyme extracts were able to act on biologically pretreated paddy straw to release reducing sugars, and the amount of reducing sugars increased with incubation time. Thus, the enzymes produced by X. axonopodis pv. punicae are more versatile and resilient with respect to their activity at different pH and temperature. These enzymes can be overproduced and find application in different industries including food, pulp and paper and biorefineries for conversion of lignocellulosic biomass.  相似文献   

17.
嗜热菌来源的生淀粉酶分离纯化及其酶学性质   总被引:2,自引:0,他引:2  
从嗜热菌库中分离到两株能水解生淀粉的菌株173和174,通过扩增和测定两株菌的16S rDNA序列并进行比对结果表明,所分离两株菌属于Geobacillus属的细菌.液体摇瓶发酵菌株173、174,其产生的生淀粉酶(简称RSDE173、RSDE174)活力分别达14.5 U/mL和12.9 U/mL.通过生淀粉吸附-熟淀粉洗脱系统和TOYOPEARL HW-55F系统进行分离纯化,得到纯化的RSDE173和RSDE174,纯化倍数分别为50和29,活力回收率分别为34%和41%.有关RSDE173和RSDE174酶学性质研究显示.对熟淀粉水解的最适作用温度均为70℃,而对生淀粉水解则分别在50℃~60℃和40℃~60℃下表现出高水解活力;对不同底物的最适作用pH值均为5.0~5.5;它们对大多数试验离子的敏感性较低,但个别离子如Co2 、Cu'2 对RSDE173或u'2 对RSDE174的酶活力有一定的抑制作用.纯化的这两种生淀粉酶对不同来源生淀粉的底物专一性并不相同.RSDE173底物专一性顺序为红薯淀粉>小麦淀粉>玉米淀粉>木薯淀粉>糯米淀粉;而RSDE174的糯米淀粉>小麦淀粉>红薯淀粉>玉米淀粉>木薯淀粉.RSDE173对生红薯淀粉有很好的降解,其水解糊化淀粉与生红薯淀粉的比值为1.48;而RSDE174优先降解生糯米淀粉,其相应比值为1.69.  相似文献   

18.
Psychrotolerant Pseudomonas stutzeri strain 7193 capable of producing an extracellular α-amylase was isolated from deep sea sediments of Prydz Bay, Antarctic. The 59678-Da protein (AmyP) was encoded by 1665-bp gene (amyP). The deduced amino acid sequence was identified with four regions, which are conserved in amylolytic enzymes and form a catalytic domain, and was predicted to be maltotetraose forming extracellular amylase by using the I-TASSER online server. Purification of AmyP amylases from both the recombinant of Escherichia coli Top 10 F′ and strain 7193 was conducted. Biochemical characterization revealed that the optimal amylase activity was observed at pH 9.0 and temperature 40°C. The enzymes were unstable at temperatures above 30°C, and only retain half of their highest activity after incubation at 60°C for 5 min. Thin-layer chromatography analysis of the products of the amylolytic reaction showed the presence of maltotetraose, maltotriose, maltose and glucose in the starch hydrolysate.  相似文献   

19.
Pullulanase was immobilized on tannic acid and TEAE-cellulose, and β-amylase was covalently immobilized on p-aminobenzylcellulose. Both the immobilized enzymes showed similar properties in pH and temperature optima and heat stability. On passing the pullulan solution at high temperature (50°C) through a column packed with immobilized pullulanase, only maltotriose was obtained for ten days and the half-life was about 15 days. In a continuous reaction using immobilized multienzyme, starch was completely converted into maltose at 50°C and at a space velocity of 1.2, a comparative longer half-life (20 days) was obtained. It was concluded that starch was smoothly converted into maltose with the aid of α-amylase contaminated in the immobilized pullulanase and the operational stability of the column increased with 2-5mM Ca2+.  相似文献   

20.
Pyrazinamide has received considerable attention for its effective antibacterial action in the reappearance of tuberculosis and for its broad application in the chemical industry. In this study, a 2-cyanopyrazine-degrading bacterial strain, numbered ZJB-09104, was newly isolated and identified as Serratia marcescens, based on its physiological and biological tests, ATB system analysis, and 16S rDNA sequence analysis. The strain exhibits only nitrile hydratase (NHase) activity and this NHase belongs to the cobalt NHase family of enzymes. Thermostability tests suggested that the NHase is thermophilic with an optimum temperature of 50°C. The NHase was effective in converting nitriles to the corresponding amides under the conditions of temperature 50°C and time course 7 h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号