首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the enumeration of male-specific bacteriophages in sewage   总被引:13,自引:0,他引:13  
Male-specific bacteriophages adsorb to F-pili and thus can only infect male host strains. A method was developed for the selective enumeration of these phages, based on the observation that in sewage there are few phages capable of infecting F- -salmonellas--usually less than 10 pfu/ml. Using a male Salmonella strain, constructed by the introduction of the plasmid F'42 lac::Tn5 into Salmonella typhimurium phage type 3, plaque counts in secondary effluent were found to be in the range of 60-8200 pfu/ml. Practically all the phages detected had a host range restricted to male Salmonella or Escherichia coli strains, were resistant to chloroform and their infectivity was inhibited by RNase. Electron microscopy of lysates revealed phage particles that were morphologically identical to the male-specific single-strand RNA phages. Similar results were obtained with a strain of Salm. indiana carrying F'42 lac. A derivative of the Salm. typhimurium LT2 strain carrying an F-plasmid (F'42 lac fin P301) derepressed for fertility inhibition by the resident plasmid pSLT was equally sensitive to male-specific phages, but from sewage samples many other phages infecting F- E. coli but not F- Salmonella were isolated using this host strain.  相似文献   

2.
A method for the enumeration of male-specific bacteriophages in sewage   总被引:3,自引:3,他引:0  
H avelaar , A.H. & H ogeboom , W.M. 1984. A method for the enumeration of male-specific bacteriophages in sewage. Journal of Applied Bacteriology 56 , 439–447.
Male-specific bacteriophages adsorb to F-pili and thus can only infect male host strains. A method was developed for the selective enumeration of these phages, based on the observation that in sewage there are few phages capable of infecting F--salmonellas—usually less than 10 pfu/ml. Using a male Salmonella strain, constructed by the introduction of the plasmid F'42 lac::Tn5 into Salmonella typhimu-rium phage type 3, plaque counts in secondary effluent were found to be in the range of 60–8200 pfu/ml. Practically all the phages detected had a host range restricted to male Salmonella or Escherichia coli strains, were resistant to chloroform and their infectivity was inhibited by RNase. Electron microscopy of lysates revealed phage particles that were morphologically identical to the male-specific single-strand RNA phages. Similar results were obtained with a strain of Salm. indiona carrying F'42 lac . A derivative of the Salm. typhimurium LT2 strain carrying an F-plasmid (F'42 lac fin P301) derepressed for fertility inhibition by the resident plasmid pSLT was equally sensitive to male-specific phages, but from sewage samples many other phages infecting F- E. coli but not F- Salmonella were isolated using this host strain.  相似文献   

3.
Artificial control of phage specificity may contribute to practical applications, such as the therapeutic use of phages and the detection of bacteria by their specific phages. To change the specificity of phage infection, gene products (gp) 37 and 38, expressed at the tip of the long tail fiber of T2 phage, were exchanged with those of PP01 phage, an Escherichia coli O157:H7 specific phage. Homologous recombination between the T2 phage genome and a plasmid encoding the region around genes 37-38 of PP01 occurred in transformant E. coli K12 cells. The recombinant T2 phage, named T2ppD1, carried PP01 gp37 and 38 and infected the heterogeneous host cell E. coli O157:H7 and related species. On the other hand, T2ppD1 could not infect E. coli K12, the original host of T2, or its derivatives. The host range of T2ppD1 was the same as that of PP01. Infection of T2ppD1 produced turbid plaques on a lawn of E. coli O157:H7 cells. The binding affinity of T2ppD1 to E. coli O157:H7 was weaker than that of PP01. The adsorption rate constant (ka) of T2ppD1 (0.17 x 10(-9)(ml CFU(-1) min(-1)) was almost 1/6 that of PP01 (1.10 x 10(-9)(ml CFU(-1) min(-1))). In addition to the tip of the long tail fiber, exchange of gene products expressed in the short tail fiber may be necessary for tight binding of recombinant phage.  相似文献   

4.
Phage FIC is a spontaneous host-dependent mutant of phage FI which is classified into the fourth group of RNA Escherichia coli phages (RNA coliphages). The mutant phage (FIC) grows normally in E. coli strain Q13 (permissive host), but poorly in strain A/lambda (non-permissive host) (9). Attempts to elucidate the regulatory mechanism of growth of the mutant phage in the non-permissive host revealed the following: (a) growth of the mutant phage was specifically restricted in E. coli strains that have certain suppressor genes for amber mutation; (b) the mutant phage RNA (FIC-RNA) could not produce progeny in the spheroplasts of the non-permissive host; (c) adsorption of the mutant phage to, and penetration of the mutant phage RNA into, the non-permissive host were normal; and (d) biosynthesis of the phage-specific late protein and RNA did not occur in the non-permissive host. Based on these results we conclude that phage FIC is a spontaneous azure-type mutant of the fourth group of RNA coliphage FI.  相似文献   

5.
Two coliphages, AR1 and LG1, were characterized based on their morphological, host range, and genetic properties. Transmission electron microscopy showed that both phages belonged to the Myoviridae; phage particles of LG1 were smaller than those of AR1 and had an isometric head 68 nm in diameter and a complex contractile tail 111 nm in length. Transmission electron micrographs of AR1 showed phage particles consisting of an elongated isometric head of 103 by 74 nm and a complex contractile tail 116 nm in length. Both phages were extensively tested on many strains of Escherichia coli and other enterobacteria. The results showed that both phages could infect many serotypes of E. coli. Among the enterobacteria, Proteus mirabilis, Shigella dysenteriae, and two Salmonella strains were lysed by the phages. The genetic material of AR1 and LG1 was characterized. Phage LG1 had a genome size of 49.5 kb compared to 150 kb for AR1. Restriction endonuclease analysis showed that several restriction enzymes could degrade DNA from both phages. The morphological, genome size, and restriction endonuclease similarities between AR1 and phage T4 were striking. Southern hybridizations showed that AR1 and T4 are genetically related. The wide host ranges of phages AR1 and LG1 suggest that they may be useful as biocontrol, therapeutic, or diagnostic agents to control and detect the prevalence of E. coli in animals and food.  相似文献   

6.
Biocontrol of Escherichia coli O157 with O157-specific bacteriophages.   总被引:2,自引:0,他引:2  
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4 degrees C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4 degrees C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

7.
A dual specificity for phage T5 adsorption to Escherichia coli cells is shown. The tail fiber-containing phages T5(+) and mutant hd-3 adsorbed rapidly to E. coli F (1.2 x 10(-9) ml min(-1)), whereas the adsorption rate of the tail fiber-less mutants hd-1, hd-2, and hd-4 was low (7 x 10(-11) ml min(-1)). The differences in adsorption rates were due to the particular lipopolysaccharide structure of E. coli F. Phage T4-resistant mutants of E. coli F with an altered lipopolysaccharide structure exhibited similar low adsorption for all phage strains with and without tail fibers. The same held true for E. coli K-12 and B which also differ from E. coli F in their lipopolysaccharide structures. Only the tail fiber-containing phages reversibly bound to isolated lipopolysaccharides of E. coli F. Infection by all phage strains strictly depended on the tonA-coded protein in the outer membrane of E. coli. We assume that the reversible preadsorption by the tail fibers to lipopolysaccharide accelerates infection which occurs via the highly specific irreversible binding of the phage tail to the tonA-coded protein receptor. The difference between rapid and slow adsorption was also revealed by the competition between ferrichrome and T5 for binding to their common tonA-coded receptor in tonB strains of E. coli. Whereas binding of T5(+) to E. coli K-12 and of the tail-fiber-less mutant hd-2 to E. coli F and K-12 was inhibited 50% by about 0.01 muM ferrichrome, adsorption of T5 to E. coli F was inhibited only 40% by even 1,000-fold higher ferrichrome concentrations.  相似文献   

8.
In a cross-test, we examined 55 strains of Citrobacter youngae against each other as potential producers of temperate bacteriophages and as potential sensitive indicators for them. Ten strains (18.2 %) showed the production of phages. Seven different strain-specific spectra of activity (from 1 to 11 strains each) were found. Phage production by 6 strains was inducible with mitomycin C, in 4 strains it was not inducible. The plaques of the phages were more or less turbid, without a lytic halo, tiny to small, 0.2-1.3 mm in diameter. Using a polyclonal, specific anti-lambda serum, all 10 phages were found to be clearly distinct from E. coli lambda phage, the phage 31/47 showing the highest neutralization titre of all. Interspecific tests with 15 strains of 8 species of Enterobacteriaceae revealed not a single case of activity of Citrobacter phages towards any of them. Five phage-immune clones lysogenized with 5 of the phages kept their remaining phage sensitivity spectra, though extended by sensitivity to 1-3 phages; 2 of these strains acquired also sensitivity to phage lambda. The phages belong to the morphotypes of Myoviridae (6 phages) and Siphoviridae (4 phages), with head diameters of 51-58 nm and tail length of 97-173 nm. Three strains produced corpuscular bacteriocins.  相似文献   

9.
The Escherichia coli capsular polysaccharides (K antigens) K5 and K20 are known as primary receptors for the coliphage phi K5 and phi K20, respectively. A host range study of the phage revealed that E. coli K5 strains were not only lysed by phi K5 but also by phi K20, and furthermore that the E. coli K95 test strain was attacked by phi K5 in addition to K5 strains. In order to find out whether the phage can degrade the K antigens, the interaction of the phage with isolated polysaccharides was studied. It could be demonstrated that phi K5 was able to depolymerize the K5 and K95 polysaccharides and that phi K20 showed degrading activity towards the antigens K20 and K5. Obviously, each of the phages was associated with two different enzyme systems which enabled them to recognize and depolymerize chemically unrelated polysaccharides.  相似文献   

10.
Salmonella typhosa hybrids able to adsorb lambda were obtained by mating S. typhosa recipients with Escherichia coli K-12 donors. After adsorption of wild-type lambda to these S. typhosa hybrids, no plaques or infective centers could be detected. E. coli K-12 gal(+) genes carried by the defective phage lambdadg were transduced to S. typhosa hybrids with HFT lysates derived from E. coli heterogenotes. The lysogenic state which resulted in the S. typhosa hybrids after gal(+) transduction differed from that of E. coli. Ability to produce lambda, initially present, was permanently segregated by transductants of the S. typhosa hybrid. S. typhosa lysogens did not lyse upon treatment for phage induction with mitomycin C, ultraviolet light, or heat in the case of thermoinducible lambda. A further difference in the behavior of lambda in Salmonella hybrids was the absence of zygotic induction of the prophage when transferred from E. coli K-12 donors to S. typhosa. A new lambda mutant class, capable of forming plaques on S. typhosa hybrids refractory to wild-type lambda, was isolated at low frequency by plating lambda on S. typhosa hybrid WR4254. Such mutants have been designated as lambdasx, and a mutant allele of lambdasx was located between the P and Q genes of the lambda chromosome. Plaques were formed also on the S. typhosa hybrid host with a series of lambda(i21) hybrid phages which contain the N gene of phage 21. The significance of these results in terms of Salmonella species as hosts for lambda is discussed.  相似文献   

11.
The evaluation of bacteriophage (phage) host range is a significant issue in understanding phage and prokaryotic community interactions. However, in conventional methods, such as plaque assay, target host strains must be isolated, although almost all environmental prokaryotes are recalcitrant to cultivation. Here, we introduce a novel phage host range evaluation method using fluorescently labeled phages (the FLP method), which consists of the following four steps: (i) Fluorescently labeled phages are added to a microbial consortium, and host cells are infected and fluorescently labeled. (ii) Fluorescent cells are sorted by fluorescence-activated cell sorting. (iii) 16S rRNA gene sequences retrieved from sorted cells are analyzed, and specific oligonucleotide probes for fluorescence in situ hybridization (FISH) are designed. (iv) Cells labeled with both fluorescently labeled phage and FISH probe are identified as host cells. To verify the feasibility of this method, we used T4 phage and Escherichia coli as a model. We first used nucleic acid stain reagents for phage labeling; however, the reagents also stained non-host cells. Next, we employed the Click-iT EdU (5-ethynyl-2'-deoxyuridine) assay kit from Invitrogen for phage labeling. Using EdU-labeled T4 phage, we could specifically detect E. coli cells in a complex microbial consortium from municipal sewage. We also confirmed that FISH could be applied to the infected E. coli cells. These results suggest that this FLP method using the EdU assay kit is a useful method for evaluating phage host range and may have a potential application for various types of phages, even if their prokaryotic hosts are currently unculturable.  相似文献   

12.
The potential replication of somatic coliphages in the environment has been considered a drawback for their use as viral indicators, although the extent to which this affects their numbers in environmental samples has not been assessed. In this study, the replication of somatic coliphages in various conditions was assayed using suspensions containing naturally occurring somatic coliphages and Escherichia coli WG5, which is a host strain recommended for detecting somatic coliphages. The effects on phage replication of exposing strain WG5 and phages to a range of physiological conditions and the effects of the presence of suspended particles or other bacteria were also assayed. Phage replication was further tested using a strain of Klebsiella terrigena and naturally occurring E. coli cells as hosts. Our results indicate that threshold densities of both host bacterium and phages should occur simultaneously to ensure appreciable phage replication. Host cells originating from a culture in the exponential growth phase and incubation at 37 degrees C were the best conditions for phage replication in E. coli WG5. In these conditions the threshold densities required to ensure phage replication were about 10(4) host cells/ml and 10(3) phages/ml, or 10(3) host cells/ml and 10(4) phages/ml, or intermediate values of both. The threshold densities needed for phage replication were higher when the cells proceeded from a culture in the stationary growth phase or when suspended particles or other bacteria were present. Furthermore E. coli WG5 was more efficient in supporting phage replication than either K. terrigenae or E. coli cells naturally occurring in sewage. Our results indicate that the phage and bacterium densities and the bacterial physiological conditions needed for phage replication are rarely expected to be found in the natural water environments.  相似文献   

13.
A method was developed for the selective enumeration of F male-specific bacteriophages in samples of environmental waters. The host strain for the phages, Escherichia coli HS(pFamp)R, has three antibiotic resistance markers, ampicillin on the Famp plasmid, which codes for pilus production, and streptomycin and nalidixic acid on the chromosome. The strain is resistant to coliphages T2 to T7 and phi X174. More than 95% of the phages from environmental samples which plaqued on the host strain were F male specific. The host bacterium had a higher plaquing efficiency than E. coli K-12 Hfr for F-specific phages in stock suspensions and sewage effluents. The F male-specific phage levels in prechlorinated, secondary-treated sewage effluents generally were about 10(3) to 10(4) PFU/100 ml. The levels in the influents to the sewage treatment plants and in septic tank contents were about 10(5) PFU/100 ml. RNA-containing phages composed about 90% of the total F-specific phage population in sewage effluents.  相似文献   

14.
A method was developed for the selective enumeration of F male-specific bacteriophages in samples of environmental waters. The host strain for the phages, Escherichia coli HS(pFamp)R, has three antibiotic resistance markers, ampicillin on the Famp plasmid, which codes for pilus production, and streptomycin and nalidixic acid on the chromosome. The strain is resistant to coliphages T2 to T7 and phi X174. More than 95% of the phages from environmental samples which plaqued on the host strain were F male specific. The host bacterium had a higher plaquing efficiency than E. coli K-12 Hfr for F-specific phages in stock suspensions and sewage effluents. The F male-specific phage levels in prechlorinated, secondary-treated sewage effluents generally were about 10(3) to 10(4) PFU/100 ml. The levels in the influents to the sewage treatment plants and in septic tank contents were about 10(5) PFU/100 ml. RNA-containing phages composed about 90% of the total F-specific phage population in sewage effluents.  相似文献   

15.
Escherichia coli is used as an indicator microorganism in public health. The conventional way to detect E. coli requires several days to produce a result, because it requires incubation of cells. Therefore a rapid and sensitive detection method is needed. T4e-/GFP phage, characterized by suppression of lysozyme and fusion of GFP (green fluorescent protein) to its SOC (small outer capsid) protein, was constructed, and it was shown to be able to detect E. coli K12 sensitively within several hours. However, because the host range of T4 phage to E. coli present in sewage water and sea water is narrow, this phage cannot be used to detect E. coli in environmental water. Two phages named IP008 and IP052, which have a broad host range to E. coli present in sewage influent, were screened from sewage influent. Mixture of these two phages produced clear plaques on 50% of E. coli screened from sewage influent. To use these phages as a tool for detection of E. coli, gfp was inserted into gene e, which encodes a lytic enzyme, and thus lytic-activity-suppressed phages were constructed (IP008e-/GFP and IP052e-/GFP). However, the fluorescent intensity of E. coli cells infected with IP008e-/GFP and IP052e-/GFP was not enough for visualization of the cell. Therefore, in addition to the insertion of gfp into gene e, fusion of GFP to SOC of IP008e-/GFP and IP052e-/GFP was conducted to produce IP008e-/2xGFP and IP052e-/2xGFP. E. coli cells infected with IP008e-/2xGFP and IP052e-/2xGFP showed much stronger fluorescence intensity than E. coli cells infected by IP008e-/GFP and IP052e-/GFP. It is anticipated that, using these GFP-labeled phages, a broad range of E. coli present in sewage influent water can be detected rapidly.  相似文献   

16.
Phage therapy presents an alternative approach against the emerging methicillin-resistant Staphylococcus aureus (MRSA) threat. Some of the problems encountered during isolation of MRSA phages include the high prevalence of enteric phages in natural sources, nonspecific absorption of viable phage, and the formation of pinpoint or tiny plaques. The phage isolated in this study, MR-5, also formed tiny plaques against its host S. aureus ATCC 43300 (MRSA), making its detection and enumeration difficult. An improved method of increasing the plaque size of MRSA phage by incorporating sublethal concentrations of three different classes of antibiotics (inhibitors of protein synthesis) in the classical double-layer agar (DLA) method was investigated. The β-lactam and quinolone antibiotics commonly employed in earlier studies for increasing the plaque size did not show any significant effect on the plaque size of isolated MR-5 phage. Linezolid (oxazolidinone class), tetracycline, and ketolide antibiotics brought significant enhancements (3 times the original size) in the plaque size of MR-5 phage. Prior treatment with these antibiotics resulted in significant reductions in the time of adsorption and the latent period of MR-5 phage. To rule out whether the action of linezolid (which brought the maximum increase in plaque size) was specific for a single phage only, its effect on the plaque size of seven other S. aureus-specific phages was also assessed. Significant enhancements in the plaque size of these phages were observed. These results indicate that this modification can therefore safely be incorporated in the traditional DLA overlay method to search for new MRSA-virulent phages.  相似文献   

17.
Phage t was isolated from sewage from Pretoria. It formed plaques only on Escherichia coli and Salmonella typhimurium strains that carried plasmids belonging to incompatibility group T. Five of six group T plasmids permitted visible lysis of R+ host strains. There was no visible lysis of E. coli J53-2 or S. typhimurium LT2trpA8 carrying the T plasmid Rts1 although the strains supported phage growth as indicated by at least a 10-fold increase in phage titre. The latter strains transferred the plasmid at high frequency to E. coli strain CSH2 and the resulting transconjugants plated the phage. Proteus mirabilis strain PM5006(R402) failed to support phage growth although it transferred the plasmid and concomitant phage sensitivity to E. coli J53-2. The phage was hexagonal in outline, RNA-containing, resistant to chloroform and adsorbed to the shafts of pili determined by T plasmids.  相似文献   

18.
Twenty-eight coliphages were studied for their susceptibility to four systems of host control variation in Escherichia coli. Both temperate and virulent phages were studied, including phages with ribonucleic acid, double- and single-stranded deoxyribonucleic acid (DNA) and glucosylated DNA. The systems examined were E. coli C-K, K-B, B-K, and K-K(P1). The C-K, K-B, and B-K systems affected temperate phages and nonlysogenizing mutants derived from temperate phages. In general, these systems did not restrict virulent phages. Phage 21e, a variant of phage 21, lost the ability to undergo restriction in the C-K and B-K systems, but retained susceptibility to the K-B and K-K(P1) systems. This suggests that the genetic site(s) on the phage, as well as in the host, determines susceptibility to host-controlled variation. Both temperate and dependent virulent phages were susceptible to the host control system resulting from the presence of prophage P1. The autonomous and small virulents were not susceptible. In a given system, the various susceptible phages differed widely in their efficiency of plating on the restricting host. If the few infections that occur arise in rare special cells, then different populations of special cells are available to different phage species. For most phage types, when a susceptible phage infected a nonrestricting host, the progeny showed the specificity appropriate to that host. Behavior of T3 was exceptional, however. When T3 obtained from E. coli K infected E. coli C or B, some of the progeny phages retained K host specificity, whereas others acquired the specificity of the new host.  相似文献   

19.
S Finkel  C Halling  R Calendar 《Gene》1986,46(1):65-69
The old gene product of the P2 prophage interferes with plaque formation by lambda wild type phage but allows lambda phages whose red and gam genes have been deleted to form small, visible plaques (the lambda Spi- phenotype). The old gene product also kills Escherichia coli recB or recC mutants. We have cloned the old gene into the high-copy-number plasmid pBR322, where it prevents plaque formation by both lambda Spi+ and lambda Spi- phages. We transferred a DNA fragment that carries the old gene to the low-copy-number plasmid pSC101 and found that lambda Spi- phages can be selected on strains that carry this plasmid. The plasmid-borne old gene kills E. coli recB mutants, providing a selection for old- mutants.  相似文献   

20.
Some Properties of Five New Salmonella Bacteriophages   总被引:5,自引:2,他引:3       下载免费PDF全文
Five bacteriophages were isolated from lysogenic strains of Salmonella potdam. On the basis of plaque morphology, thermostability, serology, host range, one-step growth parameters, and phage morphology, they were divided into three groups: group A, phages P4 and P9c; group B, phages P3 and P9a; and group C, phage P10. Group A phages had a hexagonal head 55 nm in diameter with a short tail 15 nm long. These phages were particularly characterized by high thermostability, lack of serological relationship with any of the other phages, and restriction of lysis to other Salmonella strains of Kauffmann-White group C(1). Group B phages had a head identical in size and shape to that of the A phages, but they possessed a tail 118 nm long with a contractile sheath. A unique feature was the occurrence of tail fibers at the end of the core rather than at the base of the sheath. These phages were considerably less thermostable, had extended host ranges, and were serologically distinct from each other but unrelated to the A phages. The group C phage, P10, had a head identical to that of the A and B phages. It had a tail 95 nm in length, with tail fibers attached to a base plate at the end of a contractile sheath. P10 was highly sensitive to heat, lysed only smooth strains of Salmonella, and showed a degree of serological relationship to both B phages. The relationship of these phage groups to previous Salmonella phage grouping schemes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号