首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The Col2a1 gene is expressed in notochord, otic vesicle, cartilaginous tissue and the anlage of endochondral bone during development in higher vertebrates. Type II collagen, a homotrimeric product of the Col2a1 gene, functions as a key regulatory protein for cartilage development and endochondral ossification. In medaka and zebrafish, a single homolog of the col2a1 gene has been identified. However, it is necessary to note that many genes are duplicated in teleost fishes. To clarify function of col2a1 genes in teleost fishes and to further understand the process of cartilage development and endochondral ossification, we cloned and mapped the gene loci of two col2a1 orthologs in medaka. The proteins encoded by both medaka col2a1a and col2a1b genes were highly conserved (85.3% and 82.6%) relative to human COL2A1, but synteny was not observed. We also examined the expression patterns of col2a1a and col2a1b during embryonic development. Whole-mount insitu hybridization data suggests that expression patterns of both medaka co2a1a and col2a1b genes are similar to that of zebrafish co2a1 in the early embryonic stages. In medaka, the two col2a1 genes show a closely correlated pattern of spatial and temporal expression. In late embryonic stages, however, there were differences in both expression patterns in the pectoral fin. This study is the first report of two homologs of col2a1 in teleosts and also the first examination of col2a1a and col2a1b expression patterns in this group.  相似文献   

2.
Six1 controls patterning of the mouse otic vesicle   总被引:3,自引:0,他引:3  
Six1 is a member of the Six family homeobox genes, which function as components of the Pax-Six-Eya-Dach gene network to control organ development. Six1 is expressed in otic vesicles, nasal epithelia, branchial arches/pouches, nephrogenic cords, somites and a limited set of ganglia. In this study, we established Six1-deficient mice and found that development of the inner ear, nose, thymus, kidney and skeletal muscle was severely affected. Six1-deficient embryos were devoid of inner ear structures, including cochlea and vestibule, while their endolymphatic sac was enlarged. The inner ear anomaly began at around E10.5 and Six1 was expressed in the ventral region of the otic vesicle in the wild-type embryos at this stage. In the otic vesicle of Six1-deficient embryos, expressions of Otx1, Otx2, Lfng and Fgf3, which were expressed ventrally in the wild-type otic vesicles, were abolished, while the expression domains of Dlx5, Hmx3, Dach1 and Dach2, which were expressed dorsally in the wild-type otic vesicles, expanded ventrally. Our results indicate that Six1 functions as a key regulator of otic vesicle patterning at early embryogenesis and controls the expression domains of downstream otic genes responsible for respective inner ear structures. In addition, cell proliferation was reduced and apoptotic cell death was enhanced in the ventral region of the otic vesicle, suggesting the involvement of Six1 in cell proliferation and survival. In spite of the similarity of otic phenotypes of Six1- and Shh-deficient mice, expressions of Six1 and Shh were mutually independent.  相似文献   

3.
4.
The role of Six1 in mammalian auditory system development   总被引:7,自引:0,他引:7  
The homeobox Six genes, homologues to Drosophila sine oculis (so) gene, are expressed in multiple organs during mammalian development. However, their roles during auditory system development have not been studied. We report that Six1 is required for mouse auditory system development. During inner ear development, Six1 expression was first detected in the ventral region of the otic pit and later is restricted to the middle and ventral otic vesicle within which, respectively, the vestibular and auditory epithelia form. By contrast, Six1 expression is excluded from the dorsal otic vesicle within which the semicircular canals form. Six1 is also expressed in the vestibuloacoustic ganglion. At E15.5, Six1 is expressed in all sensory epithelia of the inner ear. Using recently generated Six1 mutant mice, we found that all Six1(+/-) mice showed some degree of hearing loss because of a failure of sound transmission in the middle ear. By contrast, Six1(-/-) mice displayed malformations of the auditory system involving the outer, middle and inner ears. The inner ear development in Six1(-/-) embryos arrested at the otic vesicle stage and all components of the inner ear failed to form due to increased cell death and reduced cell proliferation in the otic epithelium. Because we previously reported that Six1 expression in the otic vesicle is Eya1 dependent, we first clarified that Eya1 expression was unaffected in Six1(-/-) otic vesicle, further demonstrating that the Drosophila Eya-Six regulatory cassette is evolutionarily conserved during mammalian inner ear development. We also analyzed several other otic markers and found that the expression of Pax2 and Pax8 was unaffected in Six1(-/-) otic vesicle. By contrast, Six1 is required for the activation of Fgf3 expression and the maintenance of Fgf10 and Bmp4 expression in the otic vesicle. Furthermore, loss of Six1 function alters the expression pattern of Nkx5.1 and Gata3, indicating that Six1 is required for regional specification of the otic vesicle. Finally, our data suggest that the interaction between Eya1 and Six1 is crucial for the morphogenesis of the cochlea and the posterior ampulla during inner ear development. These analyses establish a role for Six1 in early growth and patterning of the otic vesicle.  相似文献   

5.
Induction of the otic placode involves a number of regulatory interactions. Early studies revealed that the induction of this program is initiated by instructive signals from the mesendoderm as well as from the adjacent hindbrain. Further investigations on the molecular level identified in zebrafish Fgf3, Fgf8, Foxi1, Pax8, Dlx3b and Dlx4b genes as key players during the induction phase. Thereafter an increasing number of genes participates in the regulatory interactions finally resulting in a highly structured sensory organ. Based on data from zebrafish we selected medaka genes with presumptive functions during early ear development for an expression analysis. In addition we isolated Foxi1 and Dlx3b gene fragments from embryonic cDNA. Altogether we screened the spatio-temporal distribution of more than 20 representative marker genes for otic development in medaka embryos, with special emphasis on the early phases. Whereas the spatial distribution of these genes is largely conserved between medaka and zebrafish, our comparative analysis revealed several differences, in particular for the timing of expression.  相似文献   

6.
7.
8.
9.
Vertebrate inner ear develops from its rudiment, otic placode, which later forms otic vesicle and gives rise to tissues comprising the entire inner ear. Although several signaling molecules have been identified as candidates responsible for inner ear specification and patterning, many details remain elusive. Here, we report that Paraxial Protocadherin (PAPC) is required for otic vesicle formation in Xenopus embryos. PAPC is expressed strictly in presumptive otic placode and later in otic vesicle during inner ear morphogenesis. Knockdown of PAPC by dominant-negative PAPC results in the failure of otic vesicle formation and the loss of early inner ear markers Sox9 and Tbx2, suggesting the requirement of PAPC in the early stage of otic vesicle development. However, PAPC alone is not sufficient to induce otic placode formation.  相似文献   

10.
11.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   

12.
xPAK1, a probable effector of stress activated MAP-kinase SAPK1/JNK activation and cytoskeletal dynamics, was found to be ubiquitously expressed within the Xenopus laevis ear and lateral line system during the development and differentiation of these organs. xPAK1 expression was very strong in the otic placode from its condensation, and expression continued in the otic vesicle up until stage 35/36, after which it abruptly ceased. At stage 29/30 expression occurred specifically in the epithelium of the otic vesicle, which includes the prospective sensorial epithelium. Expression of xPAK1 was also observed in the lateral line system from stage 35/36, at which stage the lateral line primordia have begun to migrate from the region of the otic vesicle. Lateral line expression continued at least until stage 37/38, at which time xPAK1 was noted in association with the differentiating lateral line organs. To our knowledge, xPAK1 is the first ubiquitous lateral line marker that is also expressed in the ear. In the context of previous studies, our data suggest that xPAK1 either plays a role in the differentiation of the mechano-sensors of the auditory system or in the formation of the otic vesicle epithelium and the lateral line primordia.  相似文献   

13.
During development of the zebrafish inner ear, regional patterning in the ventral half of the otic vesicle establishes zones of gene expression that correspond to neurogenic, sensory and non-neural cell fates. FGF and Retinoic acid (RA) signalling from surrounding tissues are known to have an early role in otic placode induction and otic axial patterning, but how external signalling cues are translated into intrinsic patterning during otic vesicle (OV) stages is not yet understood. FGF and RA signalling pathway members are expressed in and around the OV, suggesting important roles in later patterning or maintenance events. We have analysed the temporal requirement of FGF and RA signalling for otic development at stages after initial anteroposterior patterning has occurred. We show that high level FGF signalling acts to restrict sensory fates, whereas low levels favour sensory hair cell development; in addition, FGF is both required and sufficient to promote the expression of the non-neural marker otx1b in the OV. RA signalling has opposite roles: it promotes sensory fates, and restricts otx1b expression and the development of non-neural fates. This is surprisingly different from the earlier requirement for RA signalling in specification of non-neural fates via tbx1 expression, and highlights the shift in regulation that takes place between otic placode and vesicle stages in zebrafish. Both FGF and RA signalling are required for the development of the otic neurogenic domain and the generation of otic neuroblasts. In addition, our results indicate that FGF and RA signalling act in a feedback loop in the anterior OV, crucial for pattern refinement.  相似文献   

14.
15.
The otic vesicle (otocyst) occupies a pivotal position in inner ear development, bridging the gap between otic placode determination, and morphogenesis of vestibular and auditory compartments. The molecular mechanisms underlying the progressive subdivision of the developing inner ear into different compartments, and the molecular control and execution of the different developmental processes involved, are largely unknown. Since relatively few genes have been implicated in these processes, we have undertaken this study to identify genes involved in these early embryonic stages. We have used cDNA subtractions of mouse otic vesicle against adult liver cDNA, and describe a set of 280 candidate genes. We have also performed otic vesicle RNA hybridizations against DNA chips to not only confirm the efficacy of the library approach, but also to investigate the utility of DNA array alternatives. To begin to dissect potential developmental roles, we investigated the spatial pattern of gene expression for a selected set of 80 genes in developing mouse embryos at mid-gestation by whole-mount in situ hybridization. These data illustrate the compartmentalisation of gene expression in the otic vesicle for the majority of genes tested, and furthermore, implicate many of the genes tested with distinct developmental subprocesses.  相似文献   

16.
The development of the vertebrate inner ear is a complex process that has been investigated in several model organisms. In this work, we examined genetic interactions regulating early development of otic structures in medaka. We demonstrate that misexpression of Fgf8, Dlx3b and Foxi1 during early gastrulation is sufficient to produce ectopic otic vesicles. Combined misexpression strongly increases the appearance of this phenotype. By using a heat-inducible promoter we were furthermore able to separate the regulatory interactions among Fgf8, Foxi1, Dlx3b, Pax8 and Pax2 genes, which are active during different stages of early otic development. In the preplacodal stage we suggest a central position of Foxi1 within a regulatory network of early patterning genes including Dlx3b and Pax8. Different pathways are active after the placodal stage with Dlx3b playing a central role. There Dlx3b regulates members of the Pax-Six-Eya-Dach network and also strongly affects the early dorsoventral marker genes Otx1 and Gbx2.  相似文献   

17.
In zebrafish, Hedgehog (Hh) signalling is required to specify posterior otic identity. This presents a conundrum, as the nearest source of Hh to the developing inner ear is the ventral midline, in the notochord and floorplate. How can a source of Hh that is ostensibly constant with respect to the anteroposterior axis of the otic vesicle specify posterior otic identity? One possibility is that localised inhibition of Hh signalling is involved. Here we show that genes coding for three inhibitors of Hh signalling, su(fu), dzip1 and hip, are expressed in and around the developing otic vesicle. su(fu) and dzip1 are ubiquitously expressed and unaffected by Hh levels. The expression of hip, however, is positively regulated by Hh signalling and has a complex, dynamic pattern. It is detectable in the neural tube, otic vesicle, statoacoustic ganglion, brain, fin buds, mouth, somites, pronephros and branchial arches. These expression domains bear some similarity, but are not identical, to those of ptc1, a Hh receptor gene that is also positively regulated by Hh signalling. In the neural tube, for instance, hip is expressed in a subset of the ptc1 expression domain, while in other regions, including the otic vesicle, hip and ptc1 expression domains differ. Significantly, we find that initial expression of hip is higher in and adjacent to anterior otic regions, while ptc1 expression becomes progressively restricted to the posterior of the ear. Hip-mediated inhibition of Hh signalling may therefore be important in restricting the effects of Hh to posterior regions of the developing inner ear.  相似文献   

18.
The inner ear of all jawed vertebrates arises from the epithelium of the otic vesicle and contains three semicircular canals, otoliths, and sets of sensory neurons, all positioned precisely within the cranium to detect head orientation and movement. The msh-C gene and two new homebox genes, msh-D and a gene related to distal-less, dlx-3, are each expressed in distinct regions of the otic vesicle during its early development in zebrafish embryos. Cells in the ectoderm express dlx-3 before induction of the otic vesicle, suggesting that dlx-3 has an early function in this process. Later, cells aligned with the future axes of the semicircular canals specifically express either dlx-3 or msh-D. Even later, sensory hair cells express msh-C and msh-D, while other cells of the epithelium express dlx-3. The early expression of these genes could specify the orientation and morphogenesis of the inner ear, whereas their later expression could specify the fates of particular cell types.  相似文献   

19.
Three homologues of the Drosophilaregion-specific homeotic gene spalt (sal) have been isolated in zebrafish, sall1a, sall1b and sall3. Phylogenetic analysis of these genes against known salDNA sequences showed zebrafish sall1aand sall1b to be orthologous to other vertebrate sal-1 genes and zebrafish sall3to be orthologous to other vertebrate sal-3 genes, except Xenopus sall3. Phylogenetic reconstruction suggests that zebrafish sall1a and sall1bresulted from a gene duplication event occurring prior to the divergence of the ray-finned and lobe-finned fish lineages. Analysis of the expression pattern of the zebrafish sal genes shows that sall1a and sall3 share expression domains with both orthologous and non-orthologous vertebrate sal genes. Both are expressed in various regions of the CNS, including in primary motor neurons. Outside of the CNS, sall1a expression is observed in the otic vesicle (ear), heart and in a discrete region of the pronephric ducts. These analyses indicate that orthologies between zebrafish sal genes and other vertebrate sal genes do not imply equivalence of expression pattern and, therefore, that biological functions are not entirely conserved. However we suggest that, like other vertebrate sal genes, zebrafish sal genes have a role in neural development. Also, expression of zebrafish sall1a in the otic vesicle, heart sac and the pronephric ducts of zebrafish embryos is possibly consistent with some of the abnormalities seen in Sall1-deficient mice and in Townes-Brocks Syndrome, a human disorder which is caused by mutations in the human spalt gene SALL1.  相似文献   

20.
Fgf3 and Fgf10 are required for mouse otic placode induction   总被引:1,自引:0,他引:1  
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号