首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted to determine why 10,10-difluoro, 13-dehydroprostacyclin (DF2-PGI2) has a long vascular relexant activity but like PGI2 hads a short duration of effect . DF2-PGI2 produced depressor responses in anesthetized dogs which were not affected by nephrectomy suggesting that the kidney was not responsible for the termination of action. DF2-PGI2 given intravenously or into the ascending oarta produced depressor responses of a similar magnitude but injection of the same doses into the hepatic portal circulation resulted in a large attenuation of responses. The data suggest hepatitic, but not pulmonary, metabolism of DF2-PGI2. Injection or infusion of PGI2 and DF2-PGI2 into the hindlimb circulation caused vasodilation of a similar duration suggesting diffusion from tissue sites as another mechanims of termination of action.  相似文献   

2.
Prostaglandins regulate macrophage function by their action on membrane-associated adenyl cyclase. In order to define more directly macrophage-prostaglandin interactions, a binding assay has been developed for macrophage receptors using (3H)-PGI2 as ligand. (3H)-PGI2 binding was specific, saturable and reversible. Moreover, specific binding showed to be enriched in a membrane-enriched fraction of the cells. The assay conditions ensured stability of (3H)-PGI2 during incubations and should exclude intracellular accumulation of the ligand in macrophages. Unlabelled PGE2 and PGI2 competed for (3H)-PGI2 specific binding in both macrophages and membrane preparations. PGE2 showed to be more potent in this respect than PGI2, a phenomena which was also observed for prostaglandin activation of cAMP production in macrophages. The data suggest an interaction at receptor level of endogenously released PGE2 and PGI2 by peritoneal macrophages in vivo and provide support for a previously proposed mechanism of action of low concentrations of PGE2, counteracting stimulation of cAMP production by PGI2 in macrophages.  相似文献   

3.
Prostacyclin (PGI2) is metabolized to 6-keto-prostaglandin E1 (6-keto-PGE1) which is more stable yet equipotent to PGI2 in lowering systemic arterial blood pressure in the dog. In this study, partial hepatectomy was performed to determine the role of the liver in the vasodepressor response to both intravenously administered PGI2 and 6-keto-PGE1. The magnitude and the duration of systemic hypotensive responses were measured in hepatectomized and sham-operated male Wistar rats following less than maximal, equidepressor doses of PGI2 (0.3 microgram/kg), 6-keto-PGE1 (1.0 microgram/kg), and also PGE1 (3.0 micrograms/kg) and PGE2 (3.0 micrograms/kg). Hepatectomy did not significantly alter the magnitude of the systemic hypotensive response to any of the prostaglandins tested. This indicates that the liver and hepatic circulation do not contribute significantly to the hypotensive effect of these prostaglandins by alterations of systemic vascular resistance, venous pooling of blood, or the generation of additional vasoactive metabolites as may be expected following administration of these prostaglandins. However, hepatectomy did significantly increase the duration of the hypotensive response to PGI2 and 6-keto-PGE1 but not PGE1 or PGE2. We conclude that in vivo, the liver has a more significant role in PGI2 and 6-keto-PGE1 inactivation than in the inactivation of PGE1 and PGE2 when administered intravenously. These results also support the relatively greater significance of the lung in the inactivation of PGE1 and PGE2 in vivo.  相似文献   

4.
The role of prostaglandins (PGs) in the pressor response to norepinephrine (NE) was examined in one-kidney, one clip rabbits with renal artery stenosis for 3-day's duration (3-day clipped rabbits) and in sham operated rabbits with one-kidney without renal artery stenosis. An exaggerated pressor response to NE, 800 ng/kg/min, was observed in the 3-day clipped rabbits, and it was abolished by angiotensin II antagonist, [Sar1, Ile8] angiotensin II (AIIA). Treatment with indomethacin, 10 mg/kg, induced hyperresponsiveness to NE in the sham operated rabbits and also produced a further increase in the response in the 3-day clipped rabbits: the enhanced responses with similar levels were not attenuated by AIIA in both groups. A subdepressor dose of PGE2, 800 ng/kg/min, abolished the hyperresponsiveness in the 3-day clipped rabbits, while subdepressor or depressor dose of PGI2, 10 or 20 ng/kg/min did not, but the concurrent infusion of AIIA with PGI2 attenuated it. These results indicate that PGs, in particular PGE2 might be involved in the enhanced pressor response to NE in the 3-day clipped rabbits in addition to the altered renin-angiotensin system.  相似文献   

5.
Previous work has demonstrated that intravenously administered angiotensin II is more potent than angiotensin III as a systemic vasopressor agent. We tested the hypothesis that this difference in potency is caused at least partially by angiotensin II being more potent than angiotensin III as a vasoconstrictor in the hindlimb and hepatic vasculatures. The effects of angiotensins II and III on hindlimb and hepatic blood flow were evaluated in 14 dogs anesthetized with pentobarbital. Blood flows were measured electromagnetically. Graded doses of angiotensins II and III were administered as bolus injections directly into the arterial supply of the hindlimb and liver. On the basis of duration and graphic integration of the flow responses, but not on the basis of absolute changes in amplitude, angiotensin II was significantly more potent than angiotensin III as a vasoconstrictor in the hindlimb vasculature. In the hepatic circulation the flow changes produced by angiotensin II and angiotensin III were not significantly different on the basis of duration, graphic integration, or amplitude. We conclude that (i) differential vasoconstrictor responses of the hindlimb, but not the hepatic circulation, to angiotensins II and III contribute to the difference in systemic vasopressor potency between these two peptides, and (ii) because flow responses are an integral event with duration and constantly varying amplitude, evaluation of vasoconstrictor potency based only upon amplitude of the flow changes can be misleading.  相似文献   

6.
The carotid arterial blood pressure and heart rate responses to intravenous injections of substance P, neurotensin and bombesin were compared in anaesthetized rats. In rats anaesthetized with urethane neurotensin produced only a fall in blood pressure but in rats anaesthetized with sodium thiobutabarbitone, the fall was preceded by a transient rise in blood pressure. The reason for the different responses to neurotensin with the two anaesthetics was not investigated. The hypotensive effect of neurotensin observed with both anaesthetics was abolished by mepyramine and therefore appeared to be mediated by action on H1 receptors either of neurotensin directly or of histamine released. On the other hand, catecholamines might be implicated in the pressor response to neurotensin observed in rats anaesthetized with sodium thiobutabarbitone since it was reduced by phentolamine and hexamethonium. Low doses of substance P produced a depressor response which was not inhibited by the antagonists tested. At higher doses marked tachycardia occurred and the depressor response was less and was often followed by a pressor response. The tachycardia was abolished by propranolol but not by cervical cord section or by hexamethonium. Bombesin produced a pressor response which was unaffected by hexamethonium but was reversed to depressor by phentolamine. This depressor response to bombesin was abolished by propranolol. It was concluded that substance P produced a depressor response by action on its own specific receptors and tachycardia by catecholamine release whereas neurotensin and bombesin produced cardiovascular actions which were mediated entirely by amine release.  相似文献   

7.
Low concentrations of copper inhibited responses to norepinephrine and angiotensin (IC50 3 X 10(-6) M) but not to potassium in rat mesenteric vascular preparations perfused either with buffer or indomethacin and prostaglandin (PGE2). The dose-response curve was not shifted by indomethacin, imidazole, or PGE2 but was moved to the right by 2.8 X 10(-11) M PGE1 and to the left by 2.8 X 10(-7) M PGE1. These effects of copper are similar to the effects of PGI2 in the preparation. Copper moved the PGI2 dose-response curve against noradrenaline in parallel to the left, suggesting that the two were interacting at some point. Penicillamine, which may stimulate PGE1 synthesis, had PGE1-like interactions with the copper effect, suggesting that its value in Wilson's disease may be partly due to antagonism of the biological action of copper as well as to its copper-chelating properties.  相似文献   

8.
Temperature is one of the most important environmental factors that affect organisms, especially ectotherms, due to its effects on protein stability. Understanding the general rules that govern thermostability changes in proteins to adapt high-temperature environments is crucial. Here, we report the amino acid substitutions of phosphoglucose isomerase (PGI) related to thermostability in the Glanville fritillary butterfly (Melitaea cinxia, Lepidoptera: Nymphalidae). The PGI encoded by the most common allele in M. cinxia in the Chinese population (G3-PGI), which is more thermal tolerant, is more stable under heat stress than that in the Finnish population (D1-PGI). There are 5 amino acid substitutions between G3-PGI and D1-PGI. Site-directed mutagenesis revealed that the combination of amino acid substitutions of H35Q, M49T, and I64V may increase PGI thermostability. These substitutions alter the 3D structure to increase the interaction between 2 monomers of PGI. Through molecular dynamics simulations, it was found that the amino acid at site 421 is more stable in G3-PGI, confining the motion of the α-helix 420–441 and stabilizing the interaction between 2 PGI monomers. The strategy for high-temperature adaptation through these 3 amino acid substitutions is also adopted by other butterfly species (Boloria eunomia, Aglais urticae, Colias erate, and Polycaena lua) concurrent with M. cinxia in the Tianshan Mountains of China, i.e., convergent evolution in butterflies.  相似文献   

9.
To know the metabolism of low-molecular-weight S-nitrosothiols (RS-NO) in the circulation, we analyzed the stability and depressor effects of S-nitrosoglutathione (GS-NO) and the l- and d-forms of S-nitrosocysteine (Cys-NO). Although half-lives of these RS-NO in fresh plasma were longer than 50 min, their depressor effects disappeared within 5 min after intravenous administration of these compounds. Acivicin (AT-125), an inhibitor of gamma-glutamyltransferase (gamma-GTP), prolonged the depressor effect of GS-NO but not of Cys-NO. The depressor effect of GS-NO disappeared in AT-125-treated rats within 10 min after administration, which is still shorter than its half-life in vitro. Although S-conjugates of l-cysteine, but not of d-cysteine, rapidly enter into cells via an active transport system and disappear from the circulation, both forms of Cys-NO exhibited similar activity to decrease blood pressure to that of NO. Thus, NO might be rapidly released from Cys-NO in the circulation and shortly exhibited its depressor action. These observations suggested that the circulating GS-NO is rapidly decomposed by gamma-GTP to form Cys-NO and that the release of NO from both GS-NO and Cys-NO is enhanced significantly in the circulation.  相似文献   

10.
Intracerebroventricular (ICV) injections of prostacyclin (PGI2) produced biphasic blood pressure responses consisting of an initial hypotensive phase followed by a sustained pressor phase in awake rats. Heart rate increased following such injections in either awake or anesthetized rats. PGI2, 1 microgram, produced biphasic responses and, 10 micrograms, purely vasodepressor responses in anesthetized rats, but abdominal sympathetic nerve firing recorded was consistently increased. Hypophysectomy did not affect the hypotensive phase of the responses. These results indicate that the initial hypotension can not be explained by centrally-induced changes in sympathetic nerve activity or vasopressin release, but may be due to peripheral effects of PGI2 leaking from the injection site.  相似文献   

11.
Early treatment with prostacyclin (PGI2) was previously shown to reduce mortality in the galactosamine model of acute hepatic failure in the rat, with a decreased release of hepatic cytosolic and lysosomal enzymes. In this study, 9 beta-methylcarbacyclin, a chemically stable analogue of PGI2, had similar protective effects to PGI2 in vivo but required approximately 100-fold higher concentrations (2 mg kg-1). These effects were only obtained when 9 beta-methylcarbacyclin was given early (0 to 6 h post-galactosamine) but not later (24 to 30 h). In isolated rat hepatocytes in vitro galactosamine up to a concentration of 100 mM caused a dose-dependent inhibition of L-[U-14C] leucine incorporation into protein and increase in the release of the cytoplasmic enzyme lactate dehydrogenase. Studies on the short-term effects of 9 beta-methylcarbacyclin using isolated hepatocytes treated with galactosamine (5 mM) showed that this agent, at an optimum concentration of 30 ng ml-1, was capable of significantly reducing the inhibition of protein synthesis caused by galactosamine but did not alter the rate of release of lactate dehydrogenase. The results demonstrate that the protective effects of 9 beta-methylcarbacyclin occur early in the time course of galactosamine action, and include direct effects on the hepatocytes.  相似文献   

12.
Derow A  Izydorczyk I  Kuhn A  Reeh PW  Petho G 《Life sciences》2007,81(25-26):1685-1693
The bradykinin-induced sensitization of cutaneous nociceptors to heat was previously shown to be abolished by cyclooxygenase blockade suggesting that endogenous prostaglandins exerted a heat-sensitizing action. The present study aimed at investigating the effects of exogenous prostaglandin E(2) (PGE(2)) and I(2) (PGI(2)) on noxious heat-evoked responses of rat cutaneous nociceptors. As neuropeptides including calcitonin gene-related peptide (CGRP) can be released from the peptidergic subset of heat-sensitive nociceptors, both the spike-generating (afferent) and CGRP-releasing (efferent) responses to heat stimulation were assessed by recording action potentials from single cutaneous C-fibers and measuring immunoreactive CGRP (iCGRP) release from isolated skin flaps, respectively. A combination of PGE(2) and PGI(2) (100 microM for both) unlike 10 microM PGE(2) or PGI(2) increased the number of spikes discharged during a noxious heat stimulus whereas the heat threshold remained unchanged. In contrast, 100 microM PGE(2) plus PGI(2) failed to increase the iCGRP release induced by noxious heat (47 degrees C) from the isolated rat skin. PGE(2) (100 microM), however, augmented the iCGRP-releasing effect of protons (pH 5.7). The adenylyl cyclase activator forskolin and the protein kinase C activator phorbol ester (PMA, 10 microM for both) facilitated heat-induced iCGRP release whereas increasing the intracellular Ca(2+) concentration by 10 microM ionomycin produced a desensitization of the response. In conclusion, PGE(2) plus PGI(2) can sensitize the afferent function of nociceptors in the rat skin, by increasing heat-induced spike discharge, but not the heat-induced efferent response i.e. iCGRP release. This discrepancy might reflect the differences between mechanisms of Na(+) channel-dependent spike generation and Ca(2+)-dependent neuropeptide release.  相似文献   

13.
The effect of prostacyclin (PGI2) on blood pressure and heart rate (in vivo) and on isolated heart tissue has been investigated in different species. Isolated cardiac tissue had limited responses to PGI2 tested at 10(-13) to 10(-5) M. Cultured neonatal rat heart cells did not respond to PGI2, neither did intact rat hearts or rabbit cardiac tissue. Guinea pig and rat atria showed limited dose-dependent responses to PGI2 at concentrations greater than 10(7) M. In rat atria, 10(-5) M PGI2 produced a limited elevation of tissue cAMP content. When given by intravenous injection or infusion, PGI2 produced hypotension in anaesthetized primates (three species), rat, rabbit, pig, and dog. As a vasodepressor in all species, PGI2 (on a weight basis) was more active than prostaglandins of the B or E type and, in most species tested, it was approximately five times more active than PGE2. Heart responses in intact animals were often paradoxical in that decreases in heart rate often accompanied blood pressure falls.  相似文献   

14.
We previously reported that nitric oxide (NO) derived from endothelial NO synthase (NOS) increased endothelial prostacyclin (PGI(2)) production in rats subjected to hepatic ischemia-reperfusion (I/R). The present study was undertaken to determine whether neutrophil elastase (NE) decreases endothelial production of PGI(2), thereby contributing to the development of I/R-induced liver injury by decreasing hepatic tissue blood flow in rats. Hepatic tissue levels of 6-keto-PGF(1alpha), a stable metabolite of PGI(2), were transiently increased and peaked at 1 h after reperfusion, followed by a gradual decrease until 3 h after reperfusion. Sivelestat sodium hydrochloride and L-658,758, two NE inhibitors, reduced I/R-induced liver injury. These substances inhibited the decreases in hepatic tissue levels of 6-keto-PGF(1alpha) at 2 and 3 h after reperfusion but did not affect the levels at 1 h after reperfusion. These NE inhibitors significantly increased hepatic tissue blood flow from 1 to 3 h after reperfusion. Both hepatic I/R-induced increases in the accumulation of neutrophils and the microvascular permeability were inhibited by these two NE inhibitors. Protective effects induced by the two NE inhibitors were completely reversed by pretreatment with nitro-l-arginine methyl ester, an inhibitor of NOS, or indomethacin. Administration of iloprost, a stable derivative of PGI(2), produced effects similar to those induced by NE inhibitors. These observations strongly suggest that NE might play a critical role in the development of I/R-induced liver injury by decreasing endothelial production of NO and PGI(2), leading to a decrease in hepatic tissue blood flow resulting from inhibition of vasodilation and induction of activated neutrophil-induced microvascular injury.  相似文献   

15.
The mechanism by which acetylcholine (ACh) decreases systemic arterial pressure and hindlimb vascular resistance was investigated in the anesthetized rat. ACh injections caused dose-dependent decreases in systemic arterial pressure and hindlimb vascular resistance. N(omega)-nitro-L-arginine methyl ester (L-NAME) had little effect on the magnitude of depressor and vasodilator responses but decreased response duration when baseline parameters were corrected by a nitric oxide (NO) donor infusion. The decrease in the duration of the ACh depressor response was prevented by the administration of excess L-arginine. The L-NAME-resistant component of the depressor response to ACh was attenuated by ebselen, a glutathione peroxidase mimic. The calcium-activated potassium (K(Ca)) antagonists charybdotoxin (ChTX) and apamin decreased the magnitude but not the duration of the hindlimb vasodilator response to ACh. The combination of L-NAME, ChTX, and apamin reduced the magnitude and duration of the vasodilator response to ACh but not to sodium nitroprusside. Vasodepressor and hindlimb vasodilator responses to ACh were not modified by cytochrome P-450 and cyclooxygenase pathway inhibitors. These results suggest that the hindlimb vasodilator response to ACh has an initial L-NAME-resistant component mediated by the activation of K(Ca) channels and a sustained L-NAME-dependent component. The results with ebselen suggest that the L-NAME-resistant component of the depressor response involves a peroxide-sensitive mechanism. The present study suggests that vasodilator responses to ACh are not mediated by cytochrome P-450 products, since miconazole and 1-aminobentriazole alone or in combination did not affect either component of the response. The present data suggest that the hindlimb vasodilator response to ACh in the rat is mediated by two mechanisms with an initial ChTX- and apamin-sensitive, L-NAME-resistant phase not mediated by cytochrome P-450 products and a secondary sustained phase mediated by NO.  相似文献   

16.
Recently two local hormones, thromboxane A2 (TXA2) and prostacyclin (PGI2) have been discovered. These hormones are labile metabolites of arachidonic acid. TXA2 is generated by blood platelets, while PGI2 is produced by vascular endothelium. TXA2 is a potent vasoconstrictor. It also initiates the release reaction, followed by platelet aggregation. PGI2 is a vasodilator, especially potent in coronary circulation. It also inhibits platelet aggregation by virtue of stimulation of platelet adenyl cyclase. Common precursors for both hormones are cyclic endoperoxides PGG2 and PGH2, being formed by cyclooxygenation of arachidonic acid. This last enzymic reaction is more efficient in platelets than in vascular endothelium, and therefore the generation of PGI2 by vasuclar wall is accelerated by an interaction between platelets and endothelial cells. During this interaction platelets supply the endothelial PGI2 synthetase with their cyclic endoperoxides. The newly formed PGI2 repels the platelets from the intima. When PGI2 synthetase is irreversibly inactivated by low concentration of lipid peroxides, then the platelets are not rejected but stick to the endothelium, generate TXA2 and mature thrombi are formed. A balance between formation and release of PGI2, TXA2 and/or cyclic endoperoxides in circulation is of utmost importance for the control of intra-arterial thrombi formation and possibly plays a role in the pathogenesis of atherosclerosis.  相似文献   

17.
P Hedqvist 《Prostaglandins》1979,17(2):249-258
In the Tyrode's perfused rabbit kidney PGI2 (1.3 x 10(-8)-3.3 x 10(-7)M) dose-dependently inhibited vasoconstrictor responses to sympathetic nerve stimulation, as did PGE2. The dose-effect curve of the two compounds differed, making PGI2 the less potent in the low concentration and the more potent in the high. PGI2 also inhibited the vasoconstrictor response to exogenous noradrenaline, but it had no effect on transmitter release. The main metabolite of PGI2, 6-keto-PGF1 alpha, was ineffective both on noradrenaline release and on vascular responses to nerve stimulation or exogenous noradrenaline. It is suggested that PGI2, if a significant renal prostaglandin, may modulate renal neuroeffector transmission post-junctionally, thereby forming a complement to the prejunctional action of PGE2.  相似文献   

18.
Experiments were performed in 14 anesthetized dogs to (1) to determine if the reductions in hindlimb blood flow produced by [des-Asp1] angiotensin I were due to its local enzymatic (kininase II) conversion to angiotensin III and (2) to quantitate the extent of conversion of angiotensin I to angiotensin II and of [des-Asp1] angiotensin I to angiotensin III in the hindlimb circulation. Graded doses of these peptides were administered as bolus injections directly into the left external iliac artery while measuring flow in this artery electromagnetically. Dose-response relationships were determined before and during the inhibition of kininase II activity with captopril or antagonism of angiotensin receptor sites with [Ile7] angiotensin III. Captopril inhibited the vasoconstrictor responses to angiotensin I and [des-Asp1] angiotensin I, but did not affect the responses to angiotensins II or III, or norepinephrine. [Ile7] angiotensin III inhibited the vasoconstrictor responses to all four angiotensin peptides but did not alter the responses to norepinephrine. These findings indicate that the hindlimb vasoconstrictor responses to [des-Asp1] angiotensin I were due to the local formation of angiotensin III. The extent of conversion of [des-Asp1] angiotensin I to angiotensin III that occurred in one transit through the hindlimb arterial circulation was estimated to be 36.7%, which was not different from the estimated 36.4% conversion of angiotensin I to angiotensin II. We conclude that angiotensin I and [des-Asp1] angiotensin I are converted to their respective vasoactive forms (angiotensins II and III) to a similar extent in the hindlimb circulation via the action of kininase II.  相似文献   

19.
Prostacyclin (PGI2) production by bovine aortic or human umbilical vein endothelial cells increased when either human high density lipoproteins3 (HDL3) or low density lipoproteins (LDL) were added to a serum-free culture medium. At low concentrations and short incubation times, HDL3 produced more PGI2 than LDL, but LDL was just as effective as HDL3 in 18-hr incubations with high concentrations of lipoproteins. Neither lipoprotein was toxic to the cultures as assessed by [3H]leucine incorporation into cell protein. The stimulatory effect of HDL3 and LDL on PGI2 production decreased as growing cultures became confluent. Incubation with lipoproteins neither enhanced arachidonic acid release nor increased PGI2 formation when the cells were stimulated subsequently with ionophore A23187, indicating that the lipoproteins do not affect the intracellular processes involved in PGI2 production. The addition of albumin reduced the amount of PGI2 formation elicited by HDL3 or LDL. As compared with albumin-bound arachidonic acid, from 6- to 13-fold less PGI2 was produced during incubation with the lipoproteins. Furthermore, the amount of PGI2 formation elicited by the lipoproteins in 18 hr was 4-fold less than that produced during incubation with a fatty acid mixture containing only 5% arachidonic acid, and 3-fold less than when the cells were stimulated with the ionophore A23187 for 20 min. Taken together, our results indicate that human HDL and LDL contribute to endothelial PGI2 production only in a modest way and suggest that this process is not specific for either of these two plasma lipoproteins. In view of the greater participation of albumin-bound arachidonic acid in PGI2 production, plasma lipoproteins may not play as important a role in endothelial prostaglandin formation as has been suggested.  相似文献   

20.
The endothelium comprises a cellular barrier between the circulation and tissues. We have previously shown that activation of protease-activated receptor 1 (PAR-1) and PAR-2 on the surface of human coronary artery endothelial cells by tryptase or thrombin increases group VIA phospholipase A(2) (iPLA(2)β) activity and results in production of multiple phospholipid-derived inflammatory metabolites. We isolated cardiac endothelial cells from hearts of iPLA(2)β-knockout (iPLA(2)β-KO) and wild-type (WT) mice and measured arachidonic acid (AA), prostaglandin I(2) (PGI(2)), and platelet-activating factor (PAF) production in response to PAR stimulation. Thrombin (0.1 IU/ml) or tryptase (20 ng/ml) stimulation of WT endothelial cells rapidly increased AA and PGI(2) release and increased PAF production. Selective inhibition of iPLA(2)β with (S)-bromoenol lactone (5 μM, 10 min) completely inhibited thrombin- and tryptase-stimulated responses. Thrombin or tryptase stimulation of iPLA(2)β-KO endothelial cells did not result in significant PAF production and inhibited AA and PGI(2) release. Stimulation of cardiac endothelial cells from group VIB (iPLA(2)γ)-KO mice increased PAF production to levels similar to those of WT cells but significantly attenuated PGI(2) release. These results indicate that cardiac endothelial cell PAF production is dependent on iPLA(2)β activation and that both iPLA(2)β and iPLA(2)γ may be involved in PGI(2) release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号