首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of the ARF-GEF family has drawn great attention recently, especially GNOM and GNL1, owing to their important role in plant development. A homolog of GBF was identified in Nicotiana tabacum, named NtGNL1, which is ubiquitously expressed throughout the tobacco life cycle. In NtGNL1 RNAi plants, irregular orientation of cell division and asynchronous cell development during early embryogenesis disrupted the symmetry of the developing embryo. In addition, root growth in transgenic lines was significantly slower than that in wild-type plants, although the structure of the root tip was largely intact. Pollen germination and pollen tube growth were also inhibited in the transgenic lines, and the tip of the pollen tube presented various aberrant morphologies in one of the transgenic lines. The phenotypes of different NtGNL1 RNAi transgenic lines suggest that the NtGNL1 is likely to be involved not only in embryogenesis and postembryonic development, but also in sexual reproduction; thus, NtGNL1 may play multiple and critical roles in plant development.  相似文献   

2.
3.
类伸展蛋白(Leucine-Rich Repeats Extensins,LRX)是一类细胞壁嵌合蛋白,其N端包含一个LRR(leucine-rich repeats)结构域,C端含Extensins结构域。研究表明,LRX基因家族在拟南芥(Arabidopsis thaliana)花粉萌发和花粉管生长过程中具有重要作用,而水稻(Oryza sativa L.) LRX基因家族是否在调控花粉发育方面具有保守的生物学功能尚不清楚。本研究首先进行了生物信息学分析,结果显示,水稻LRX基因家族包括8个成员,OsPEX3、OsLRX3、OsLRX5位于水稻第1号染色体;OsLRX1、OsLRX3、OsLRX2、OsPEX1和OsPEX2分别位于第2、第5、第6、第11和第12号染色体,其中OsPEX1基因在花粉中高表达,暗示OsPEX1可能参与了花粉发育调控。为此,本研究采用RNAi技术进一步研究了OsPEX1基因对花粉发育的影响。结果表明,OsPEX1基因的RNAi转基因植株花粉败育,结实率仅为10%-30%。qRT-PCR分析显示,这些RNAi转基因植株OsPEX1基因表达量显著低于野生型...  相似文献   

4.
In flowering plants, sperm cells develop in the pollen cytoplasm and are transported through floral tissues to an ovule by a pollen tube, a highly polarized cellular extension. After targeting an ovule, the pollen tube bursts, releasing two sperm that fertilize an egg and a central cell. Here, we identified the gene encoding Arabidopsis HAP2, demonstrating that it is allelic to GCS1. HAP2 is expressed only in the haploid sperm and is required for efficient pollen tube guidance to ovules. We identified an insertion (hap2-1) that disrupts the C-terminal portion of the protein and tags mutant pollen grains with the beta-glucuronidase reporter. By monitoring reporter expression, we showed that hap2-1 does not diminish pollen tube length in vitro or in the pistil, but it reduces ovule targeting by twofold. In addition, we show that the hap2 sperm that are delivered to ovules fail to initiate fertilization. HAP2 is predicted to encode a protein with an N-terminal secretion signal, a single transmembrane domain and a C-terminal histidine-rich domain. These results point to a dual role for HAP2, functioning in both pollen tube guidance and in fertilization. Moreover, our findings suggest that sperm, long considered to be passive cargo, are involved in directing the pollen tube to its target.  相似文献   

5.
Proline‐rich proteins (PRPs) are known to play important roles in sexual plant reproduction. Most of the known proteins in the family were found in styles or pollen and modulate pollen tube growth. Here, we identified a novel member of the gene family, NtProRP1, which is preferentially expressed in tobacco pollen grains, pollen tubes and zygotes. NtProRP1 could be secreted into the extracellular space including the cell wall, and the predicted N‐terminal signal peptide is crucial for its secretion. In NtProRP1‐RNAi plants, pollen germination and pollen tube growth were significantly slower and showed zigzag or swell morphology in vitro. Early embryogenesis also exhibited aberrant development, indicative of its critical role in both pollen tube growth and early embryogenesis. Further investigation revealed that NtProRP1 plays a crucial role in osmotic stress response during pollen tube growth and is likely regulated by Tsi, a stress‐responsive gene, suggesting that the regulatory mechanism is also involved in the stress response during sexual plant reproduction. These data provide evidence that NtProRP1 functions as a downstream factor of Tsi1 in the stress response and converges the stress signal into the modulation of pollen tube growth and early embryogenesis.  相似文献   

6.
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative “linker” between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.  相似文献   

7.
In the present report, we described the effects of indole-3-acetic acid (IAA), zeatin (ZT), gibberellin (GA3), and abscisic acid (ABA) on in vitro pollen germination and pollen tube growth in Torenia fournieri L. The results showed that IAA and GA3 stimulated in vitro pollen tube growth, ABA inhibited pollen tube growth, and ZT had no significant effect on the process. The stimulating effect of exogenous IAA was particularly distinct, and led to synchronous growth of straighter and more slender pollen tubes compared with the controls. However, no significant changes were found in the germination of the treated pollen. The auxin efflux inhibitor, 10 μM 1-N-naphthylphthalamic acid (NPA), was also found to stimulate pollen tube growth. We measured the content of hormones (free IAA, ZT, GA3, and ABA) in the stigmas and styles before and after pollination. The hormone contents of stigmas measured 0.5 h after pollination (0.5 HAP) showed that ABA content decreased, whereas the content of IAA, ZT, or GA3 did not change significantly. The hormone level in pollinated styles (4 HAP) when pollen tubes had grown into the middle part of style was characterized by an increase in free IAA and GA3 and a decrease in ABA, which was in agreement with the results that IAA and GA3 promoted but ABA inhibited pollen tube growth in vitro. Furthermore, the change of IAA level in styles was most notable, which was accordant to the fact that auxin stimulated significantly pollen tube growth in vitro. Using immunoenzyme and immunogold labeling techniques and an anti-IAA monoclonal antibody, we confirmed that free IAA was present throughout style tissues, and distributed in the nucleus and cytoplasm of style cells. All these results suggested that hormones, especially IAA, play important roles in pollen tube growth of T. fournieri. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Cellulose is an important component of cell wall, yet its location and function in pollen tubes remain speculative. In this paper, we studied the role of cellulose synthesis in pollen tube elongation in Pinus bungeana Zucc. by using the specific inhibitor, 2, 6-dichlorobenzonitrile (DCB). In the presence of DCB, the growth rate and morphology of pollen tubes were distinctly changed. The organization of cytoskeleton and vesicle trafficking were also disturbed. Ultrastructure of pollen tubes treated with DCB was characterized by the loose tube wall and damaged organelles. DCB treatment induced distinct changes in tube wall components. Fluorescence labeling results showed that callose, and acidic pectin accumulated in the tip regions, whereas there was less cellulose when treated with DCB. These results were confirmed by FTIR microspectroscopic analysis. In summary, our findings showed that inhibition of cellulose synthesis by DCB affected the organization of cytoskeleton and vesicle trafficking in pollen tubes, and induced changes in the tube wall chemical composition in a dose-dependent manner. These results confirm that cellulose is involved in the establishment of growth direction of pollen tubes, and plays important role in the cell wall construction during pollen tube development despite its lower quantity.  相似文献   

9.

Key Message

We show that DCN1 binds ubiquitin and RUB/NEDD8, associates with cullin, and is functionally conserved. DCN1 activity is required for pollen development transitions and embryogenesis, and for pollen tube growth.

Abstract

Plant proteomes show remarkable plasticity in reaction to environmental challenges and during developmental transitions. Some of this adaptability comes from ubiquitin-mediated protein degradation regulated by cullin-RING E3 ubiquitin ligases (CRLs). CRLs are activated through modification of the cullin subunit with the ubiquitin-like protein RUB/NEDD8 by an E3 ligase called DEFECTIVE IN CULLIN NEDDYLATION 1 (DCN1). Here we show that tobacco DCN1 binds ubiquitin and RUB/NEDD8 and associates with cullin. When knocked down by RNAi, tobacco pollen formation was affected and zygotic embryogenesis was blocked around the globular stage. Additionally, we found that RNAi of DCN1 inhibited the stress-triggered reprogramming of cultured microspores from their intrinsic gametophytic mode of development to an embryogenic state. This stress-induced developmental switch is a known feature in many important crops and leads ultimately to the formation of haploid embryos and plants. Compensating the RNAi effect by re-transformation with a promoter-silencing construct restored pollen development and zygotic embryogenesis, as well as the ability for stress-induced formation of embryogenic microspores. Overexpression of DCN1 accelerated pollen tube growth and increased the potential for microspore reprogramming. These results demonstrate that the biochemical function of DCN1 is conserved in plants and that its activity is involved in transitions during pollen development and embryogenesis, and for pollen tube growth.  相似文献   

10.
Pollen tube cells elongate based on actin- dependent targeted secretion at the tip. Rho family small GTPases have been implicated in the regulation of related processes in animal and yeast cells. We have functionally characterized Rac type Rho family proteins that are expressed in growing pollen tubes. Expression of dominant negative Rac inhibited pollen tube elongation, whereas expression of constitutive active Rac induced depolarized growth. Pollen tube Rac was found to accumulate at the tip plasma membrane and to physically associate with a phosphatidylinositol monophosphate kinase (PtdIns P-K) activity. Phosphatidylinositol 4, 5-bisphosphate (PtdIns 4, 5-P2), the product of PtdIns P-Ks, showed a similar intracellular localization as Rac. Expression of the pleckstrin homology (PH)-domain of phospholipase C (PLC)-delta1, which binds specifically to PtdIns 4, 5-P2, inhibited pollen tube elongation. These results indicate that Rac and PtdIns 4, 5-P2 act in a common pathway to control polar pollen tube growth and provide direct evidence for a function of PtdIns 4, 5-P2 compartmentalization in the regulation of this process.  相似文献   

11.
L Ma  X Xu  S Cui    D Sun 《The Plant cell》1999,11(7):1351-1364
The role of heterotrimeric G proteins in pollen germination, tube growth, and signal transduction of extracellular calmodulin (CaM) was examined in lily pollen. Two kinds of antibodies raised against animal Gzalpha, one against an internal sequence and the other against its N terminus, cross-reacted with the same 41-kD protein from lily pollen plasma membrane. This 41-kD protein was also specifically ADP ribosylated by pertussis toxin. Microinjection of the membrane-impermeable G protein agonist GTP-gamma-S into a pollen tube increased its growth rate, whereas microinjection of the membrane-impermeable G protein antagonist GDP-beta-S and the anti-Galpha antibody decreased pollen tube growth. The membrane-permeable G protein agonist cholera toxin stimulated pollen germination and tube growth. Anti-CaM antiserum inhibited pollen germination and tube growth, and this inhibitory effect was completely reversed by cholera toxin. The membrane-permeable heterotrimeric G protein antagonist pertussis toxin completely stopped pollen germination and tube growth. Purified CaM, when added directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in plasma membrane vesicles, and this increase in GTPase activity was completely inhibited by pertussis toxin and the nonhydrolyzable GTP analogs GTP-gamma-S and guanylyl-5'-imidodiphosphate. The GTPase activity in plasma membrane vesicles was also stimulated by cholera toxin. These data suggest that heterotrimeric G proteins may be present in the pollen system where they may be involved in the signal transduction of extracellular CaM and in pollen germination and tube growth.  相似文献   

12.
13.
Liao F  Wang L  Yang LB  Peng X  Sun M 《PloS one》2010,5(10):e13401

Background

Tobacco GNOM LIKE 1 (NtGNL1), a new member of the Big/GBF family, is characterized by a sec 7 domain. Thus, we proposed that NtGNL1 may function in regulating pollen tube growth for vesicle trafficking.

Methodology/Principal Findings

To test this hypothesis, we used an RNAi technique to down-regulate NtGNL1 expression and found that pollen tube growth and orientation were clearly inhibited. Cytological observations revealed that both timing and behavior of endocytosis was disrupted, and endosome trafficking to prevacuolar compartments (PVC) or multivesicular bodies (MVB) was altered in pollen tube tips. Moreover, NtGNL1 seemed to partially overlap with Golgi bodies, but clearly colocalized with putative late endosome compartments. We also observed that in such pollen tubes, the Golgi apparatus disassembled and fused with the endoplasmic reticulum, indicating abnormal post-Golgi trafficking. During this process, actin organization was also remodeled.

Conclusions/Significance

Thus, we revealed that NtGNL1 is essential for pollen tube growth and orientation and it likely functions via stabilizing the structure of the Golgi apparatus and ensuring post-Golgi trafficking.  相似文献   

14.
野菊与菊花杂交中花粉活力和柱头可授性及胚胎发育研究   总被引:4,自引:1,他引:3  
应用石蜡制片、活体压片、光学显微镜及扫描电子显微镜观察等方法,研究了四倍体河南云台山野菊(Dendranthema indicum)与栽培菊花'钟山金山'(D.grandiflorum 'Zhongshanjinshan')种间杂交中父本花粉活力、花粉在柱头萌发、花粉管生长及胚胎发育情况等.结果发现,父本云台山野菊的花粉活力在授粉时为12%左右.人工授粉后的不同时间,在柱头上都观察到正常萌发的花粉粒,且花粉管都能进入柱头,其中,在授粉后0.5 h时,平均每柱头有5.9粒花粉萌发;12 h时,为59.9粒;而24和48 h时,则分别降为47.1和35.7粒.此外,在授粉后8、10、12和15 d时,分别在49.1%、40.8%、39.7%和38.5%子房内观察到正常发育的胚胎,最终杂交结实率为44.8%,而母本自然开放结实率为52.3%.研究表明,授粉前其多数母本雌蕊发育良好、授粉后多数花粉能在柱头正常萌发和花粉管正常生长,在受精后大部分胚胎发育正常是野菊与栽培菊种间杂交较高结实率的重要保证,而授粉前父本较低的花粉活力对杂交结实率影响不大.  相似文献   

15.
极性生长是植物生长发育中的常见现象,但囊泡运输与极性生长的关系还未完全明确。花粉管和根毛是植物细胞极性生长的典型模式。早期研究显示NtGNL1(Nicotiana tabacum GNOM-LIKE 1)通过调节囊泡的后高尔基体转运来影响烟草的花粉管生长。本文以NtGNL1 RNAi转基因植株为材料,研究NtGNL1基因在根毛生长中的作用。结果表明,NtGNL1 RNAi转基因植株的根毛生长明显滞后于野生型,且其根毛出现膨大、弯折、扭曲等形态,与NtGNL1 RNAi转基因植株的花粉管异常形态类似。q RT-PCR检测RNAi转基因株系根毛中PIN1、PIN2、GL2、ROP6、RHD6基因的m RNA表达量,显示PIN2和GL2的表达量显著下调,PIN1、ROP6和RHD6的表达量变化不明显。FM4-64染色表明烟草根表皮细胞和根毛的囊泡分布都受到影响,即NtGNL1基因也影响根毛中的囊泡运输。BFA处理加剧了囊泡的聚集程度,提示根毛尖端还存在其它对BFA敏感并调控囊泡运输的基因。以上证据显示,NtGNL1基因通过囊泡运输途径影响烟草根毛的极性生长,NtGNL1基因的表达下调也影响了PIN2和GL2的表达,从而间接影响根毛的极性生长。  相似文献   

16.
Wheat FKBP73 (wFKBP73) belongs to the FK506-binding protein (FKBP) family which, in common with the cyclophilin and parvulin families, possesses peptidyl prolylcis-trans isomerase (PPIase) activity. Wheat FKBP73 has been shown to contain three FKBP12-like domains, a tetratricopeptide repeat (TPR) via which it binds heat shock protein 90 and a calmodulin-binding domain (CaMbd). In this study we investigated: (1) the contribution of the N-terminal and C-terminal moieties of wFKBP73 to its biological activity by over-expression of the prolyl isomerase domains in transgenic rice, and (2) the biochemical characteristics of the C-terminal moiety. The recombinant wFKBP73 was found to bind calmodulin via the CaMbd and to be present mainly as a dimer in solution. The dimerization was abrogated when 138 amino acids from the C-terminal half were deleted. Expression of the full-length FKBP73 produced fertile rice plants, whereas the expression of the peptidyl prolyl cis-trans isomerase domains in transgenic rice resulted in male-sterile plants. The male sterility was expressed at various stages of anther development with arrest of normal pollen development occurring after separation of the microspores from the tetrads. Although the direct cause of the dominant male sterility is not yet defined, we suggest that it is associated with a novel interaction of the prolyl isomerase domains with anther specific target proteins.  相似文献   

17.
Ca2+-CaM signaling is involved in pollen tube development. However, the distribution and function of CaM and the downstream components of Ca2+-CaM signal in pollen tube development still need more exploration. Here we obtained the CaM–GFP fusion protein transgenic line of Nicotiana tobacum SRI, which allowed us to monitor CaM distribution pattern in vivo and provided a useful tool to observe CaM response to various exogenous stimulations and afforded solid evidences of the essential functions of CaM in pollen tube growth. CaM–GFP fusion gene was constructed under the control of Lat52-7 pollen-specific promoter and transformed into Nicotiana tobacum SRI. High level of CaM–GFP fluorescence was detected at the germinal pores and the tip-to-base gradient of fluorescence was observed in developing pollen tubes. The distribution of CaM at apical dome had close relationship with the pulsant growth mode of pollen tubes: when CaM aggregated at the apical dome, pollen tubes stepped into growth state; When CaM showed non-polarized distribution, pollen tubes stopped growing. In addition, after affording exogenous Ca2+, calmidazolium (antagonism of CaM) or Brefeldin A (an inhibitor of membrane trafficking), CaM turned to a uniform distribution at the apical dome and pollen tube growth was held back. Taken together, our results showed that CaM played a vital role in pollen tube elongation and growth rate, and the oscillation of tip-to-base gradient of CaM was required for the normal pulsant growth of pollen tube.  相似文献   

18.
A Moutinho  AJ Trewavas    R Malho 《The Plant cell》1998,10(9):1499-1510
Pollen tube reorientation is a dynamic cellular event that is crucial for successful fertilization. We have shown previously that pollen tube orientation is regulated by cytosolic free calcium ([Ca2+]c). In this paper, we studied the activity of a Ca2+-dependent protein kinase during reorientation. The kinase activity was assayed in living cells by using confocal ratio imaging of BODIPY FL bisindolylmaleimide. We found that growing pollen tubes exhibited higher protein kinase activity in the apical region, whereas nongrowing cells showed uniform distribution. Modification of growth direction by diffusion of inhibitors/activators from a micropipette showed the spatial redistribution of kinase activity to predict the new growth orientation. Localized increases in [Ca2+]c induced by photolysis of caged Ca2+ that led to reorientation also increased kinase activity. Molecular and immunological assays suggest that this kinase may show some functional homology with protein kinase C. We suggest that the tip-localized gradient of kinase activity promotes Ca2+-mediated exocytosis and may act to regulate Ca2+ channel activity.  相似文献   

19.
Singh DP  Jermakow AM  Swain SM 《The Plant cell》2002,14(12):3133-3147
Gibberellins (GAs) are tetracyclic diterpenoids that are essential endogenous regulators of plant growth and development. GA levels within the plant are regulated by a homeostatic mechanism that includes changes in the expression of a family of GA-inactivating enzymes known as GA 2-oxidases. Ectopic expression of a pea GA 2-oxidase2 cDNA caused seed abortion in Arabidopsis, extending and confirming previous observations obtained with GA-deficient mutants of pea, suggesting that GAs have an essential role in seed development. A new physiological role for GAs in pollen tube growth in vivo also has been identified. The growth of pollen tubes carrying the 35S:2ox2 transgene was reduced relative to that of nontransgenic pollen, and this phenotype could be reversed partially by GA application in vitro or by combining with spy-5, a mutation that increases GA response. Treatment of wild-type pollen tubes with an inhibitor of GA biosynthesis in vitro also suggested that GAs are required for normal pollen tube growth. These results extend the known physiological roles of GAs in Arabidopsis development and suggest that GAs are required for normal pollen tube growth, a physiological role for GAs that has not been established previously.  相似文献   

20.
Song XF  Yang CY  Liu J  Yang WC 《Plant physiology》2006,141(3):966-976
The polar growth of plant cells depends on the secretion of a large amount of membrane and cell wall materials at the growing tip to sustain rapid growth. Small GTP-binding proteins, such as Rho-related GTPases from plants and ADP-ribosylation factors (ARFs), have been shown to play important roles in polar growth via regulating intracellular membrane trafficking. To investigate the role of membrane trafficking in plant development, a Dissociation insertion line that disrupted a putative ARF GTPase-activating protein (ARFGAP) gene, AT2G35210, was identified in Arabidopsis (Arabidopsis thaliana). Phenotypic analysis showed that the mutant seedlings developed isotropically expanded, short, and branched root hairs. Pollen germination in vitro indicated that the pollen tube growth rate was slightly affected in the mutant. AT2G35210 is specifically expressed in roots, pollen grains, and pollen tubes; therefore, it is designated as ROOT AND POLLEN ARFGAP (RPA). RPA encodes a protein with an N-terminal ARFGAP domain. Subcellular localization experiments showed that RPA is localized at the Golgi complexes via its 79 C-terminal amino acids. We further showed that RPA possesses ARF GTPase-activating activity and specifically activates Arabidopsis ARF1 and ARF1-like protein U5 in vitro. Furthermore, RPA complemented Saccharomyces cerevisiae glo3Delta gcs1Delta double mutant, which suggested that RPA functions as an ARFGAP during vesicle transport between the Golgi and the endoplasmic reticulum. Together, we demonstrated that RPA plays a role in root hair and pollen tube growth, most likely through the regulation of Arabidopsis ARF1 and ARF1-like protein U5 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号