首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an IC50 of more than 50 muM. Low doses of ATO or BSO (1~10 muM) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (DeltaPsi(m)) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.  相似文献   

2.
We treated four hepatocellular carcinoma cell lines, HLE, HLF, HuH7, and HepG2 with ATO and demonstrated that arsenic trioxide (ATO) at low doses (1--3 muM) induced a concentration-dependent suppression of cell growth in HLE, HLF, and HuH7. HLE cells underwent apoptosis at 2 microM ATO, which was executed by the activation of caspase-3 through the mitochondrial pathway mediated by caspase-8 activation and Bid truncation. When these cell lines were exposed to ATO in combination with l-S,R-buthionine sulfoximine (BSO) which inhibits GSH synthesis, a synergistic growth suppression was induced, even in HepG2 showing a lower sensitivity to ATO than other cell lines tested. The intracellular GSH levels after the treatment with ATO plus BSO were considerably decreased in HLE cells compared with those after the treatment with ATO or BSO alone. The production of reactive oxygen species (ROS) which was examined by 2' ,7' -dichlorodihydrofluorescein diacetate, increased significantly after the treatment with ATO plus BSO in HLE cells. These findings indicate that ATO at low concentrations induces growth inhibition and apoptosis, and furthermore that the ATO-BSO combination treatment enhances apoptosis through increased production of ROS in hepatocellular carcinoma cells.  相似文献   

3.
Arsenic trioxide (ATO) can affect many biological functions such as apoptosis and differentiation in various cells. We investigated the involvement of ROS and GSH in ATO-induced HeLa cell death using ROS scavengers, especially N-acetylcysteine (NAC). ATO increased intracellular O(2)(*-) levels and reduced intracellular GSH content. The ROS scavengers, Tempol, Tiron and Trimetazidine, did not significantly reduce levels of ROS or GSH depletion in ATO-treated HeLa cells. Nor did they reduce the apoptosis induced by ATO. In contrast, treatment with NAC reduced ROS levels and GSH depletion in the ATO-treated HeLa cells and prevented ATO-induced apoptosis. Treatment with exogenous SOD and catalase reduced the depletion of GSH content in ATO-treated cells. Catalase strongly protected the cells from ATO-induced apoptosis. In addition, treatment with SOD, catalase and NAC slightly inhibited the G1 phase accumulation induced by ATO. In conclusion, NAC protects HeLa cells from apoptosis induced by ATO by up-regulating intracellular GSH content and partially reducing the production of O(2)(*-).  相似文献   

4.
Abstract

Pyrroloquinoline quinone (PQQ), a bacterial redox co-factor and antioxidant, is highly reactive with nucleophilic compounds present in biological fluids. PQQ induced apoptosis in human promonocytic leukemia U937 cells and this was accompanied by depletion of the major cellular antioxidant glutathione and increase in intracellular reactive oxygen species (ROS). Treatment with glutathione (GSH) or N-acetyl-L-cysteine (NAC) did not spare PQQ toxicity but resulted in a 2–5-fold increase in PQQ-induced apoptosis in U937 cells. Cellular GSH levels increased following treatment by NAC alone but were severely depleted by co-treatment with NAC and PQQ. This was accompanied by an increase in intracellular ROS. Alternatively, depletion of glutathione also resulted in increased PQQ cytotoxicity. However, the cells underwent necrosis as evidenced by dual labeling with annexin V and propidium iodide. PQQ-induced cytotoxicity is thus critically regulated by the cellular redox status. An increase in GSH can augment apoptosis and its depletion can switch the mode of cell death to necrosis in the presence of PQQ. Our data suggest that modulation of intracellular GSH can be used as an effective strategy to potentiate cytotoxicity of quinones like PQQ.  相似文献   

5.
Arsenic trioxide (ATO) can regulate many biological functions such as apoptosis and differentiation in various cells. We investigated an involvement of ROS such as H(2)O(2) and O(2)(*-), and GSH in ATO-treated Calu-6 cell death. The levels of intracellular H(2)O(2) were decreased in ATO-treated Calu-6 cells at 72 h. However, the levels of O(2)(*-) were significantly increased. ATO reduced the intracellular GSH content. Many of the cells having depleted GSH contents were dead, as evidenced by the propidium iodine staining. The activity of CuZn-SOD was strongly down-regulated by ATO at 72 h while the activity of Mn-SOD was weakly up-regulated. The activity of catalase was decreased by ATO. ROS scavengers, Tiron and Trimetazidine did not reduce levels of apoptosis and intracellular O(2)(*-) in ATO-treated Calu-6 cells. Tempol showing a decrease in intracellular O(2)(*-) levels reduced the loss of mitochondrial transmembrane potential (DeltaPsi(m)). Treatment with NAC showing the recovery of GSH depletion and the decreased effect on O(2)(*-) levels in ATO-treated cells significantly inhibited apoptosis. In addition, BSO significantly increased the depletion of GSH content and apoptosis in ATO-treated cells. Treatment with SOD and catalase significantly reduced the levels of O(2)(*-) levels in ATO-treated cells, but did not inhibit apoptosis along with non-effect on the recovery of GSH depletion. Taken together, our results suggest that ATO induces apoptosis in Calu-6 cells via the depletion of the intracellular GSH contents rather than the changes of ROS levels.  相似文献   

6.
Fatty acid synthesis and oxidation are frequently exacerbated in leukemia cells, and may therefore represent a target for therapeutic intervention. In this work we analyzed the apoptotic and chemo-sensitizing action of the fatty acid oxidation inhibitor etomoxir in human acute myeloid leukemia cells. Etomoxir caused negligible lethality at concentrations up to 100 µM, but efficaciously cooperated to cause apoptosis with the anti-leukemic agent arsenic trioxide (ATO, Trisenox), and with lower efficacy with other anti-tumour drugs (etoposide, cisplatin), in HL60 cells. Etomoxir-ATO cooperation was also observed in NB4 human acute promyelocytic cells, but not in normal (non-tumour) mitogen-stimulated human peripheral blood lymphocytes. Biochemical determinations in HL60 cells indicated that etomoxir (25–200 µM) dose-dependently inhibited mitochondrial respiration while slightly stimulating glycolysis, and only caused marginal alterations in total ATP content and adenine nucleotide pool distribution. In addition, etomoxir caused oxidative stress (increase in intracellular reactive oxygen species accumulation, decrease in reduced glutathione content), as well as pro-apoptotic LKB-1/AMPK pathway activation, all of which may in part explain the chemo-sensitizing capacity of the drug. Etomoxir also cooperated with glycolytic inhibitors (2-deoxy-D-glucose, lonidamine) to induce apoptosis in HL60 cells, but not in NB4 cells. The combined etomoxir plus 2-deoxy-D-glucose treatment did not increase oxidative stress, caused moderate decrease in net ATP content, increased the AMP/ATP ratio with concomitant drop in energy charge, and caused defensive Akt and ERK kinase activation. Apoptosis generation by etomoxir plus 2-deoxy-D-glucose was further increased by co-incubation with ATO, which is apparently explained by the capacity of ATO to attenuate Akt and ERK activation. In summary, co-treatment with etomoxir may represent an interesting strategy to increase the apoptotic efficacy of ATO and (with some limitations) 2-deoxy-D-glucose which, although clinically important anti-tumour agents, exhibit low efficacy in monotherapy.  相似文献   

7.
Arsenic trioxide (ATO) is remarkably effective for treating acute promyelocytic leukemia. Here, we find that ATO treatment of NB4 and K562 leukemic cells induces activation of ASK1. ASK1 activation was induced most significantly at low concentrations of ATO, where G2/M arrest but not apoptosis was induced. On the other hand, ATO barely activated ASK1 at high concentrations, where apoptosis as well as activation of JNK and p38 was induced significantly. ATO-induced accumulation of reactive oxygen species (ROS), while the ASK1 activation was suppressed by cotreatment with an antioxidant, N-acetyl-l-cysteine. Murine embryonic fibroblasts (MEFs) from ASK1-deficient mice were more susceptible to ATO-induced apoptosis than control MEFs. Furthermore, ATO at the low concentration induced significant apoptosis in K562 cells when ASK1 was knocked down by siRNA. These results indicate that ASK1 is activated by ATO through ROS accumulation and may negatively regulate apoptosis in leukemic cells without activating p38 and JNK.  相似文献   

8.
TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.  相似文献   

9.
In this study, we investigated the effects of 24 chalcone derivatives from 2-naphthylacetophenone toward a lymphoblastic leukemia cell line (L1210). Three compounds, called R7, R13, and R15, presented concentration- and time-dependent cytotoxicity and induced cellular death by apoptosis via mitochondrial injury and oxidative stress. The effects of these compounds appear to occur through different mechanisms because R13 and R7 induced a greater disturbance of mitochondrial potential, and all compounds induced disturbances of cellular ATP content and increased caspase-3 activity before cellular death. These compounds also interfered with antioxidant enzymes activities and GSH content through different mechanisms.  相似文献   

10.
Arsenic trioxide (ATO) is effective in the treatment of acute promyelocytic leukemia (APL) and induces apoptosis in APL cells and in a great variety of other cancer cells. We have previously shown that ATO induces apoptosis in myeloma cells in two different modes depending on p53 status in the cells. In cells expressing mutated p53, ATO induced, G2/M arrest and activation caspase 8 and 3 and rapid and extensive apoptosis. Myeloma cells expressing w.t. p53, ATO induced G1 arrest and delayed apoptosis with activation of caspase 9 and 3. APO2/TRAIL receptor expression was induced in both cell types and APO2/TRAIL synergized with ATO in the induction of apoptosis. Here we tested the effect of ATO on mitochondrial membrane potential (MMP) in myeloma cells expressing mutated or w.t. p53. In myeloma cells expressing mutated p53, depolarization of MMP occurred early, concomitant with induction of APO2/TRAIL, activation of BID and release of AIF, preceding apoptosis. However, in cells expressing w.t. p53, APO2/TRAIL is not induced, BID is not cleaved and depolarization of MMP occurs concurrently with cytochrome c release and apoptosis. These results explain the greater sensitivity to ATO of cells with mutated p53 and suggest perhaps a general mechanism for ATO-induced apoptosis.  相似文献   

11.
Arsenic trioxide (ATO) is effective in the treatment of acute promyelocytic leukemia (APL) and induces apoptosis in APL cells and in a great variety of other cancer cells. We have previously shown that ATO induces apoptosis in myeloma cells in two different modes depending on p53 status in the cells. In cells expressing mutated p53, ATO induced, G2/M arrest and activation caspase 8 and 3 and rapid and extensive apoptosis. Myeloma cells expressing w.t. p53, ATO induced G1 arrest and delayed apoptosis with activation of caspase 9 and 3. APO2/TRAIL receptor expression was induced in both cell types and APO2/TRAIL synergized with ATO in the induction of apoptosis. Here we tested the effect of ATO on mitochondrial membrane potential (MMP) in myeloma cells expressing mutated or w.t. p53. In myeloma cells expressing mutated p53, depolarization of MMP occurred early, concomitant with induction of APO2/TRAIL, activation of BID and release of AIF, preceding apoptosis. However, in cells expressing w.t. p53, APO2/TRAIL is not induced, BID is not cleaved and depolarization of MMP occurs concurrently with cytochrome c release and apoptosis. These results explain the greater sensitivity to ATO of cells with mutated p53 and suggest perhaps a general mechanism for ATO-induced apoptosis.  相似文献   

12.
The treatment outcome of acute lymphoblastic leukemia (ALL) has improved steadily over the last 50 years. However, the cure rates are unlikely to be raised further with current therapies. Since increasing the dosage of chemotherapeutic agents could also elevate toxicity, a solution to how one could achieve maximum therapeutic effect with the minimum dosage possible is imminent. One possibility is the employment of combination drug therapies. Arsenic trioxide (ATO) is a widely used drug for acute promyelocytic leukemia (APL). Its combination with other drugs presented therapeutic activities in malignant cancers other than APL. Considering the fact that ATO induces mitotic arrest prior to apoptosis induction, we attempted to investigate the potential anti-cancer effects of ATO in combination with the microtubule-stabilizing agent, paclitaxel (PTX), using malignant lymphocytes as in vitro models. Three malignant lymphocytic cell lines and primary cells were treated with ATO and/or PTX. Using the Chou–Talalay analysis for evaluation of combined effect of ATO and PTX, we found a synergistic effect of the two drugs in the inhibition of cell growth. We also found that the combination of ATO and PTX at low concentrations synergistically induced mitotic arrest followed by apoptosis in malignant lymphocytes, which increased phosphorylated cyclin-dependent kinase 1 (Cdk1) on Thr161 and promoted the dysregulated activation of Cdk1. The ATO/PTX combination also significantly enhanced the activation of spindle checkpoint by inducing the formation of the inhibitory checkpoint complex BubR1/Cdc20. Our study provided the first in vitro demonstration that low concentrations of ATO and PTX synergistically induce mitotic arrest in malignant lymphocytes.  相似文献   

13.
The Nrf2-Keap1 pathway is believed to be a critical regulator of the phase II defense system against oxidative stress. By activation of Nrf2, cytoprotective genes such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase (NQO-1) and γ-glutamyl-cysteine ligase (GCL) are induced. GCL-induced glutathione (GSH) production is believed to affect redox signaling, cell proliferation and death. We here report that tert-butyl hydroperoxide (t-BHP)-induced GSH reduction led to mitochondrial membrane potential loss and apoptosis in cultured human retinal pigment epithelial cells from the ARPE-19 cell line. Hydroxytyrosol (HT), a natural phytochemical from olive leaves and oil, was found to induce phase II enzymes and GSH, thus protect t-BHP-induced mitochondrial dysfunction and apoptosis. Depletion of GSH by buthionine-[S,R]-sulfoximine enhanced t-BHP toxicity and abolished HT protection. Overexpression of Nrf2 increased GSH content and efficiently protected t-BHP-induced mitochondrial membrane potential loss. Meanwhile, HT-induced GSH enhancement and induction of Nrf2 target gene (GCLc, GCLm, HO-1, NQO-1) messenger RNA (mRNA) were inhibited by Nrf2 knockdown, suggesting that HT increases GSH through Nrf2 activation. In addition, we found that HT was able to activate the PI3/Akt and mTOR/p70S6-kinase pathways, both of which contribute to survival signaling in stressed cells. However, the effect of HT was not inhibited by the PI3K inhibitor LY294002. Rather, c-Jun N-terminal kinase (JNK) activation was found to induce p62/SQSTM1 expression, which is involved in Nrf2 activation. Our study demonstrates that Nrf2 activation induced by the JNK pathway plays an essential role in the mechanism behind HT's strengthening of the antiapoptotic actions of the endogenous antioxidant system.  相似文献   

14.
Arsenic, a known environmental toxicant, is ubiquitously present in the environment. Arsenic trioxide (ATO), an anti-acute promyelocytic leukemia (APL) drug, is associated with cardiac toxicity. It is reported to induce cardiac arrhythmia via altering various ion channels involved in the repolarization phase of cardiac action potential. The exact molecular mechanism of cardiovascular adverse effect due to ATO exposure has not been fully elucidated except for alteration on ion channels. To evaluate the cytotoxic effect of ATO on cardiac myocytes, primary culture of myocytes was treated with different doses (30, 60 and 90 μM) of ATO for various periods (24, 48 and 72 h). Cardiac toxicity was assessed by monitoring cell viability, mitochondrial and deoxyribonucleic acid (DNA) integrity, reactive oxygen species (ROS) generation, calcium overload and apoptosis. ATO exposure caused alteration in mitochondrial integrity, generation of ROS, calcium overload and apoptosis in cardiac cells in dose- and duration-dependent manner. There was no DNA fragmentation. Hence our results show that ATO causes apoptosis in cardiomyocytes by generation of ROS and the induction of calcium overload.  相似文献   

15.
We have shown that heat stress or a superoxide dismutase mimic nitroxide, Tempo, induces apoptosis, while their combination causes nonapoptotic cell death; however, the underlying mechanism for this switch remains unclear. Here we identified for the first time that 10 mM Tempo present during heating at 44°C for 30 min rapidly induced autophagy in U937 leukemic cells in spite of Bax activation and mitochondrial outer membrane (MOM) permeabilization. This co-treatment inhibited the processing of heat-activated procaspases-2, -8, -9 and -3 into active small subunits, leading to the inhibition of caspase-dependent apoptosis, and instead caused the induction of autophagy. The inactivation of caspases, a key event, could result from oxidation of active-site-CysSH of all caspases by a prooxidant oxo-ammonium cation, an intermediate derived Tempo during dismutation of heat-induced superoxide anion. In addition, the co-treatment caused mitochondrial calcium overloads, the mitochondrial inner membrane permeabilization, profound mitochondrial dysfunction, and liberation of Beclin 1 from the Bcl-2/Beclin 1 complex, all of which contributed to induction of autophagy. These autophagic cells underwent propidium iodide-positive necrosis in a delayed fashion, leading to the complete proliferative inhibition. Remarkably, ruthenium red and BAPTA, which interfere with mitochondrial calcium uptake, facilitated autophagic necrotic death. Cyclosporin A, which binds to cyclophilin D, had a similar necrotic effect. 3-Methyladenine facilitated the necrosis of autophagic cells. In contrast, 5 mM Tempo-44°C/10 min or 44°C/30 min induced Bax-mediated MOM permeabilization and caspase-dependent apoptosis more potently than Tempo alone. Thus, Tempo is a unique thermosensitizer to synergistically induce apoptosis and autophagic cell death.  相似文献   

16.
The mechanisms involved in the anti-carcinogenic activity of selenium remained to be elucidated. In the present study, we examined sodium selenite induced apoptosis and oxidative stress in human acute promyelocytic leukemia cell lines (NB4). Cell growth and viability were assessed by trypan blue exclusion and cell counting; apoptosis by DNA electrophoresis and analysis of intracellular DNA contents; reactive oxygen species and reduced glutathione in the cell were measured by lucigenin dependent chemoluminescent (CL) test and spectrophotometer; mitochondrial transmembrane potential was measured by flow cytometry. Sodium selenite could inhibit the growth and induce apoptosis of NB4 cells. Sodium selenite could increase the production of reactive oxygen species (ROS) in NB4 cells and decrease the level of intracellular reduced glutathione, but caused no change in the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx). Sodium selenite enhanced the collapse of mitochondrial transmembrane potential (MTP), in parallel with the production of ROS. Finally antioxidant N-acetylcysteine (NAC) could inhibit the ROS production, MTP collapse and apoptosis in NB4 cells. Our results suggested that sodium selenite could induce apoptosis of NB4 cells through mitochondrial change mediated by production of reactive oxygen species within the cells.  相似文献   

17.
The primary objective of this study was to determine whether caspases are involved in arsenic trioxide(ATO)-induced apoptosis of human myeloid leukemia cells. A secondary objective was to determine whether apoptosis induced by ATO compared with VP-16 is differentially affected by an activator of protein kinase C (PKC), phorbol 12-myristate 13-acetate (PMA), which has been reported to inhibit apoptosis induced by some chemotherapeutic agents. NB4 and HL60 cells were incubated with ATO in the presence and absence of the caspase protease inhibitors Z-VAD.fmk or Y-VAD. cho. Apoptosis was assessed by morphology, DNA laddering and flow cytometry. Poly (ADP-ribose) polymerase (PARP) cleavage was used as a marker for the activation of caspases. PARP cleavage occurred during ATO-induced apoptosis in both NB4 and HL60 cells. Z-VAD.fmk, a broad-spectrum inhibtor, could block ATO-induced apoptosis and PARP cleavage, whilst Y-VAD. cho, a selective inhibitor of caspase 1, had no such effect. PMA pre-incubation for up to 8 hours under conditions known to activate PKC had no effect on either ATO- or VP-16-induced apoptosis. We conclude that in cultured myeloid leukemia cells ATO-induced apoptosis is executed by caspases from the distal, PARP-cleaving part of the activation cascade and that PKC activation has no effect on apoptosis induced by either ATO or VP-16 in these cells.  相似文献   

18.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

19.
Recent studies have shown that arsenic trioxide (ATO) is an effective anti-cancer drug for treatment of acute promyelocytic leukemia and other types of human cancer. However, we have found that lung cancer cells constantly develop a high level of resistance to ATO. In this study, we have explored a possibility of combination of dihydroartemisinin (DHA) and ATO treatments to reduce ATO resistance of lung cancer cells. We determined the combinatory effects of DHA and ATO on cytotoxicity of human lung adenocarcinoma (A549) cells. We showed that co-exposure to DHA and ATO of A549 cells synergistically increased the cytotoxicity and apoptotic cell death in the cells. We found that the synergistic effect of DHA and ATO in promoting apoptosis mainly resulted from increased cellular level of reactive oxygen species (ROS) and DNA damage. ATO alone only exerted moderate growth inhibitory effects on A549 cells. The results indicate that DHA can significantly sensitize ATO-induced cytotoxicity of A549 lung cancer cells through apoptosis mediated by ROS-induced DNA damage. Interestingly, we found that the combinatory treatment of DHA and ATO did not result in significant adverse effects in normal human bronchial epithelial (HBE) cells. Our results further provide evidence for the potential application of combinatory effects of DHA and ATO as a safe therapy for human lung cancer.  相似文献   

20.
Bcl-2 protects cells against mitochondrial oxidative stress and subsequent apoptosis. However, the mechanism underlying the antioxidant function of Bcl-2 is currently unknown. Recently, Bax and several Bcl-2 homology-3 domain (BH3)-only proteins (Bid, Puma, and Noxa) have been shown to induce a pro-oxidant state at mitochondria (1-4). Given the opposing effects of Bcl-2 and Bax/BH3-only proteins on the redox state of mitochondria, we hypothesized that the antioxidant function of Bcl-2 is antagonized by its interaction with the BH3 domains of pro-apoptotic family members. Here, we show that BH3 mimetics that bind to a hydrophobic surface (the BH3 groove) of Bcl-2 induce GSH-sensitive mitochondrial dysfunction and apoptosis in cerebellar granule neurons. BH3 mimetics displace a discrete mitochondrial GSH pool in neurons and suppress GSH transport into isolated rat brain mitochondria. Moreover, BH3 mimetics and the BH3-only protein, Bim, inhibit a novel interaction between Bcl-2 and GSH in vitro. These results suggest that Bcl-2 regulates an essential pool of mitochondrial GSH and that this regulation may depend upon Bcl-2 directly interacting with GSH via the BH3 groove. We conclude that this novel GSH binding property of Bcl-2 likely plays a central role in its antioxidant function at mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号