首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The conformational properties of the capsular polysaccharide (CPS) from group B Streptococcus serotype III (GBS III) are derived from 50 ns explicitly solvated molecular dynamics simulations of a 25-residue fragment of the CPS. The results from the simulations are shown to be consistent with experimental NMR homo- and heteronuclear J-coupling and NOE data for both the sialylated native CPS and for the chemically desialylated polysaccharide. A helical structure is predicted with a diameter of 29.3 A and a pitch 89.5 A, in which the sialylated side chains are arrayed on the exterior surface of the helix. The results provide an explanation for the observation that CPS antigenicity varies with carbohydrate chain length up to approximately 4 pentasaccharide repeat units. The conformation of the immunodominant region is established and shown to be independent of the presence of sialic acid. The data provide an explanation for the observation that the specificity of the determinant, associated with the major population of antibodies raised upon immunization of rabbits with GBS III, is dependent on the presence of sialic acid. In the sialylated native CPS, the antibody response is largely directed against the immunodominant core of the helix. From simulations of the desialylated CPS, a model emerges which suggests that the minor population of antibodies, whose determinant is not sialic acid dependent, recognizes the same immunodominant region, but that in the disordered CPS this region is not presented in a regular repeating motif.  相似文献   

3.
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.  相似文献   

4.
C群脑膜炎球菌多糖菌苗是我们近年开发的一种新制品,其中唾液酸(SA)是该制品的有效成份之一。为了严格控制该制品的质量,经反复试验,对比各种试验条件,选择出较理想的测定SA方法-改良法,该法与Svennerholm氏法比较,其标准曲线变异系数(cv%)为0.03%,低于Svennerholm氏法(0.31%);其回收率平均为100.62%。与中检所方法比较,无显著差异(P〉0.05),对批样品进行6  相似文献   

5.
The immunological properties of the group B meningococcal alpha(2-8)-linked sialic acid polysaccharide have been rationalized in terms of a model where the random coil nature of the polymer can be described by the presence of local helices. The conformational versatility of the alpha NeuAc(2-8)alpha NeuAc linkage has been explored by NMR studies at 600 MHz in conjunction with potential energy calculations for colominic acid, an alpha(2-8)NeuAc polymer, and the trisaccharide alpha NeuAc(2-8)alpha NeuAc(2-8)beta NeuAc. Potential energy calculations were used to estimate the energetically favorable conformers and to describe the wide range of helices which the polymer can adopt. No unique conformer was found to satisfy all NMR constraints, and only ensemble averaged nuclear Overhauser enhancements could correctly simulate the experimental data. Conformational differences between the polymer and the trisaccharide could be best explained in terms of slight changes in the relative distribution of conformers in solution. Similar helical parameters for the alpha(2-8)NeuAc polymer and poly(A) were proposed as the basis for their cross-reactivity to a monoclonal antibody IgMNOV. The unusual length dependency for binding of oligosaccharide to group B specific antibodies was postulated to arise from the recognition of a high-order local helix with an extended conformation which was not highly populated in solution.  相似文献   

6.
The formation of a nascent peptidoglycan-group-specific antigen of type III group B Streptococcus at the cell membrane level was demonstrated with an M-1 mutanolysin-prepared protoplast system. Protoplasts of group B streptococci in suitably stabilized medium (20% sucrose) readily incorporated [3H]acetate into cell surface macromolecules. Four major polysaccharides were isolated from the protoplast cultural supernatant fluid: the peptidoglycan group-specific antigen polymer, the group B-specific antigen, and the low-molecular-weight and high-molecular-weight forms of the type III polysaccharide antigen. Biosynthesis of all four polymers was not affected by the action of chloramphenicol, indicating protein synthesis was not required for the production of polysaccharide in this system. However, all but the low-molecular-weight type III antigen were inhibited by the action of bacitracin, suggesting that three of the polymers share a common synthesis-assembly site in the membrane. Attachment of the high-molecular-weight antigen to the nascent peptidoglycan-group B antigen complex did not occur in the protoplast system, suggesting that a more complex cell wall matrix may be necessary before linkage of the high-molecular-weight antigen takes place.  相似文献   

7.
The type Ia group B Streptococcus (GBSIa) capsular polysaccharide was specifically degraded by partial Smith oxidation of 2,3-diol of the Glc in the backbone to fragments representing asialo core repeating units. Sialylation of these oligomers furnished GBSIa multiple repeating units. One, two and three repeating units of GBSIa were obtained pure, and the higher oligomers were obtained as mixtures. After enzymatic fucosylation oligosaccharides carrying bivalent, trivalent and other multivalent sialyl Le(x) epitopes presented as appendages on an oligolactoside scaffold were obtained.  相似文献   

8.
The structures of the branched capsular polysaccharides of group B streptococcus type III (GBSIIIPS) and Streptococcus pneumoniae type 14 (Pn14PS) are identical apart from the (α2→3)-linked sialic acid in the side chains of GBSIIIPS. The present study tries to determine the minimal epitope in GBSIIIPS, using both a panel of anti-Pn14PS mouse sera and sera of humans vaccinated with either Pn14PS or GBSIIIPS. Type-specific Pn14PS antibodies that recognize the branched structure of Pn14PS have a low affinity for the native GBSIIIPS. Desialylation of GBSIIIPS results in dramatically higher affinity of anti-Pn14PS antibodies. Epitope specific anti-Pn14PS mouse antibodies and human sera of PCV7 vaccinees only recognized structures with the branching element -Glc-(Gal-)GlcNAc-, in particular -Gal-Glc-(Gal-)GlcNAc- in Pn14PS. On the other hand anti-GBSIIIPS human antibodies recognize predominantly the linear structure in the backbone of Pn14PS or GBSIIIPS, i.e., -Glc-GlcNAc-Gal-. This difference in antigenicity of Pn14PS and GBSIIIPS is in agreement with the difference in flexibility of the two polysaccharides caused by the presence or absence of sialic acid.  相似文献   

9.
10.
The application of 13-C nuclear magnetic resonance to the analysis of some sialic acid-containing meningococcal polysaccharide antigens is described. Complete assignments of the spectra of both the native serogroup B and the de-O-acetylated serogroup C polysaccharides have been made. These assignments were based on the corresponding data for some related monomers (sialic acid and its alpha-and beta-methylglycosides) and on supportive chemical evidence. The data indicate that the serogroup B polysaccharide is a 2 yields 8-alpha-linked homopolymer of sialic acid, identical in structure with colominic acid from Escherichia coli, whereas the de-O-acetylated serogroup C polysaccharide is a 2 yield 9-alpha-linked homopolymer. The native serogroup C polysaccharide is O-acetylated (1.16 mol of O-acetyl per sialic acid residue), all the O-acetyl substituents being located only at C-7 and C-8 of the sialic acid residues, and in addition contains unacetylated residues (24%). The polysaccharide contains di-O-acetylated residues (O-acetyl on C-7 and C-8), and at least one of the possible monoacetylated residues at C-7 or C-8.  相似文献   

11.
Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.  相似文献   

12.
13.
The pathway for biosynthesis of sialic acid capsular polysaccharide was examined in Neisseria meningitidis serogroup B strain M986 and in strain PRM102, an isogenic mutant defective in polysaccharide production. Strain PRM102 was found to possess only 25% of the level of sialyltransferase activity that was found in strain M986, but it had wild-type levels of both the N-acetylneuraminic acid (NANA) condensing enzyme and the CMP-NANA synthetase. A new meningococcal enzyme, a CMP-NANA hydrolase, was found in both meningococcal strains. This enzyme generated CMP and NANA from CMP-NANA, had a Km of 0.88 microM, had a Vmax of 10.75 nmol of NANA produced per h per mg of protein, and was completely inhibited by 45.3 microM CMP. The sialyltransferase, which also had CMP-NANA as substrate, was insensitive to CMP addition. Subcellular fractionation and purification of cytoplasmic and outer membranes on sucrose density gradients revealed that both the sialyltransferase and the CMP-NANA hydrolase were cytoplasmic membrane associated. The NANA condensing enzyme and the CMP-NANA synthetase were found to be cytosolic. A working hypothesis for the regulation of sialic acid polysaccharide synthesis was developed. The CMP-NANA hydrolase with its high affinity for CMP-NANA regulates polysaccharide formation by the sialyltransferase, whereas CMP, a product of both the sialyltransferase and the CMP-NANA hydrolase, modulates the activity of the hydrolase on the cytoplasmic membrane.  相似文献   

14.
We examined group B streptococcus (GBS) isolates colonizing women at the 35-37 weeks of pregnancy. A total of 257 group B streptococcus (GBS) isolates for serotyped using direct agglutination with a set of commercially available antisera (Ia, Ib, II, III, IV, and V) and tested for susceptibility to antimicrobials (penicillin, macrolides, lincosamides, fluoroquinolones and tetracyclines). Fourteen isolates could not be serotyped with the antisera set used in the study. Serotype III was the predominant serotype (33%), followed by serotypes V (23%), and Ia (20%). Whereas all isolates were susceptible to penicillin, the rates of susceptibility to the other antimicrobials tested were the following: 91% for ofloxacin, 80% for clindamycin, 77% for erythromycin, and 4% for tetracycline. More than half (67%) of the macrolide resistant isolates belonged to serotypes V and III. A systematic surveillance of the autochthonous GBS serotypes, performed at the level of laboratories processing a high number of human specimens, is mandatory for strengthening the national epidemiological GBS surveillance. While penicillin remains the drug of choice for intrapartum prophylaxis, the resistance of autochthonous GBS isolates to other antibiotics should be actively monitored.  相似文献   

15.
The protective epitope of the type III group B streptococcal polysaccharide (GBSPIII) is length dependent and conformational. To obtain a more accurate characterization of the conformational epitope, ELISA inhibition and surface plasmon resonance studies were conducted on two GBSPIII-specific mAbs using a large panel of oligosaccharide probes. The results of the studies confirmed that 2 repeating units (RU) is the minimum binding unit and that, while increases in chain length from 2 RU to 7 RU caused further optimization of the epitope, it remained monovalent. A 3-fold increase in affinity was observed between 7 RU and 20 RU, which, by surface plasmon resonance studies on a Fab, was shown to be due to both further optimization of the individual epitope and the occurrence of multivalency of epitope. The data support our hypothesis that the conformational epitope is an extended helical segment of the GBSPIII. GBSPIII exists mainly in the random coil form, which structurally mimics short oligosaccharide self Ags, but it can infrequently and spontaneously form extended helices. Although not prevalent in GBSPIII, the immune system preferentially selects these helical epitopes because they are unique to the polysaccharide. Contrary to a previously proposed model of GBSPIII binding in which the binding of the first Ab propagates a continuum of helical epitopes, our binding kinetics are consistent only with the helical epitope's being discontinuous and infrequent.  相似文献   

16.
The role of surface-bound type Ia group B Streptococcus (GBS) capsular polysaccharide in antibody-independent binding of C1 and activation of the classic complement pathway was investigated. In a radiolabeled bacterial-polymorphonuclear leukocyte (PMN) association assay, a measure of bacterial opsonization, preincubation of 3H-type Ia GBS with purified F(ab')2 to the organism blocked the association of the bacteria with PMN', and the inhibitory effect was dose dependent. The specificity of F(ab')2 blocking was shown after adsorption of F(ab')2 with type Ia polysaccharide-sensitized erythrocytes. Polysaccharide-adsorbed F(ab')2 had a 70% decrease in ability to block the association of bacteria with PMN. Evidence for the requirement of the capsular polysaccharide in classic complement pathway activation came from a C1 transfer assay with the use of neuraminidase-digested type Ia GBS. Neuraminidase digestion removed 80% of the terminal sialic acid residues from the native polysaccharide. These neuraminidase-digested organisms had a 72% decrease in binding and transfer of purified C1 compared with non-enzyme-treated organisms. Type Ia capsular polysaccharide bound to sheep erythrocytes promoted classic complement pathway-mediated hemolysis of the cells. The role of C1 inhibitor (INH) in modulation of C1 activation by the organisms was investigated. The possibility existed that the C1 INH could be bound by the bacteria, allowing C1 activation to occur in the fluid phase. The inhibitor was purified from human serum, and its activity was measured before and after incubation with type Ia GBS. The organisms had no effect on C1 INH activity. Thus surface-bound capsular polysaccharide of type Ia GBS mediates C1 binding and classic pathway activation, and this does not involve the C1 INH.  相似文献   

17.
18.
19.
20.
Group B Streptococcus (GBS) cell walls potently activate phagocytes by a largely TLR2-independent mechanism. In contrast, the cell wall component lipoteichoic acid (LTA) from diverse Gram-positive bacterial species has been shown to engage TLR2. In this study we examined the role of LTA from GBS in phagocyte activation and the requirements for TLR-LTA interaction. Using cells from knockout mice and genetic complementation in epithelial cells we found that highly pure LTA from both GBS and Staphylococcus aureus interact with TLR2 and TLR6, but not TLR1, in contrast to previous reports. Furthermore, NF-kappaB activation by LTA required the integrity of two putative PI3K binding domains within TLR2 and was inhibited by wortmannin, indicating an essential role for PI3K in cellular activation by LTA. However, LTA from GBS proved to be a relatively weak stimulus of phagocytes containing approximately 20% of the activity observed with LTA from Staphylococcus aureus. Structural analysis by nuclear magnetic resonance spectrometry revealed important differences between LTA from GBS and S. aureus, specifically differences in glycosyl linkage, in the glycolipid anchor and a lack of N-acetylglucosamine substituents of the glycerophosphate backbone. Furthermore, GBS expressing LTA devoid of d-alanine residues, that are essential within immune activation by LTA, exhibited similar inflammatory potency as GBS with alanylated LTA. In conclusion, LTA from GBS is a TLR2/TLR6 ligand that might contribute to secreted GBS activity, but does not contribute significantly to GBS cell wall mediated macrophage activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号