首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Méthy  M. 《Photosynthetica》2000,38(4):505-512
The photochemical reflectance index (PRI), based on reflectance signatures at 531 and 570 nm, and associated with xanthophyll pigment inter-conversion and related thylakoid energisation, was evaluated as an indicator of photosynthetic function in a Mediterranean holm oak (Quercus ilex L.) coppice. The chlorophyll fluorescence pulse-amplitude-modulation and the eddy correlation techniques were used to estimate the photosystem 2 photochemical efficiency of leaves and the CO2 flux over the canopy, respectively. The reflectance and fluorescence techniques yielded identical estimates of the photosynthetic activity in leaves exposed to dark-light-dark cycles or to a variable irradiance in laboratory. However, there was no such correlation between photosynthetic performance and PRI when applied to a sun-exposed canopy in field conditions. Fluorescence profiles inside the canopy and especially a helpful use of multispectral reflectance imaging highlight the limitations of such method.  相似文献   

2.
In big-leaf models of canopy photosynthesis, the Rubisco activity per unit ground area is taken as the sum of activities per unit leaf area within the canopy, and electron transport capacity is similarly summed. Such models overestimate rates of photosynthesis and require empirical curvature factors in the response to irradiance. We show that, with any distribution of leaf nitrogen within the canopy (including optimal), the required curvature factors are not constant but vary with canopy leaf area index and leaf nitrogen content. We further show that the underlying reason is the difference between the time-averaged and instantaneous distributions of absorbed irradiance, caused by penetration of sunflecks and the range of leaf angles in canopies. These errors are avoided in models that treat the canopy in terms of a number of layers – the multi-layer models. We present an alternative to the multi-layer model: by separately integrating the sunlit and shaded leaf fractions of the canopy, a single layered sun/shade model is obtained, which is as accurate and simpler. The model is a scaled version of a leaf model as distinct from an integrative approach.  相似文献   

3.
Acclimation of photosynthesis in canopies: models and limitations   总被引:8,自引:0,他引:8  
Olevi Kull 《Oecologia》2002,133(3):267-279
Within a time-scale of several days photosynthesis can acclimate to light by variation in the capacity for photosynthesis with depth in a canopy or by variation in the stoichiometry of photosynthetic components at each position within the canopy. The changes in leaf photosynthetic capacity are usually related to and expressed as changes in leaf nitrogen content. However, photosynthetic capacity and leaf nitrogen never match exactly the photon flux density (PFD) gradient within a canopy. As a result, photosynthetic light use efficiency, i.e. photosynthetic performance per incident PFD, increases considerably from the top of the canopy to the lower shaded part. Many of existing optimisation models fail to express the actual pattern of nitrogen or photosynthetic capacity distribution within a canopy. This failure occurs because these optimisation models do not consider that the quantitative aspect of photosynthesis acclimation is a whole plant phenomenon. Although turnover models, which describe the distribution of the photosynthetic apparatus within a canopy as a dynamic equilibrium between breakdown and regeneration of apparatus with respect to nitrogen availability, photosynthetic rate and export of carbohydrates, produce realistic results, these models require confirmation. The mechanism responsible for changes in the relative share of light-harvesting apparatus as acclimation to irradiance remains unknown. Ability of the photosynthetic apparatus to balance properly the light harvesting capacity with electron transport and biochemical capacities is limited. As a result of this fundamental limitation, photosynthetic light use efficiency always increases with increasing thickness of the photosynthetic apparatus.  相似文献   

4.
Summary Leaf orientation (azimuth and angle) and leaf curling were measured seasonally and diurnally on Rhododendron maximum L. under an evergreen and a deciduous canopy. The microclimatic conditions under the evergreen canopy (mixed pine and hemlock) were characterized by lower irradiance but similar temperature, and vapor pressure deficit (vpd) to that under the deciduous canopy (mixed oak and maple). Under both canopies irradiance was more intense during winter months.On a seasonal basis leaf angle was closer to horizontal under the evergreen canopy but there was no difference between leaf curling in the two sites. Stomatal conductance was higher under the deciduous canopy but stomata were closed in the winter (following canopy abscission) under the evergreen and deciduous canopies even during warm winter days. Leaf water potentials were lower in the winter and Rhododendron maximum had higher leaf water potentials under the evergreen canopy.Significant association between mean leaf angle and curling index were found above a mean leaf angle of 70°. Leaf curling was highly associated with leaf temperature where 0° C was a critical value stimulating leaf curling. Leaf angle was linearly related to leaf temperatures above 0° C although this relationship was different under the two canopy types as a result of differing irradiance or differing water potential.  相似文献   

5.
Previous leaf‐scale studies of carbon assimilation describe short‐term resource‐use efficiency (RUE) trade‐offs where high use efficiency of one resource requires low RUE of another. However, varying resource availabilities may cause long‐term RUE trade‐offs to differ from the short‐term patterns. This may have important implications for understanding canopy‐scale resource use and allocation. We used continuous gas exchange measurements collected at five levels within a Norway spruce, Picea abies (L.) karst., canopy over 3 years to assess seasonal differences in the interactions between shoot‐scale resource availability (light, water and nitrogen), net photosynthesis (An) and the use efficiencies of light (LUE), water (WUE) and nitrogen (NUE) for carbon assimilation. The continuous data set was used to develop and evaluate multiple regression models for predicting monthly shoot‐scale An. These models showed that shoot‐scale An was strongly dependent on light availability and was generally well described with simple one‐ or two‐parameter models. WUE peaked in spring, NUE in summer and LUE in autumn. However, the relative importance of LUE for carbon assimilation increased with canopy depth at all times. Our results suggest that accounting for seasonal and within‐canopy trade‐offs may be important for RUE‐based modelling of canopy carbon uptake.  相似文献   

6.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

7.
Parameters of photosynthesis vs. irradiance curves varied markedly between tissues from microsites along the < 10-cm axes of the tropical intertidal red algae Ahnfeltiopsis concinna (J. Ag.) Silva et DeCew and Laurencia mcdermidiae (J. Ag.) Abbott. Differences in photosynthetic performance between tissues from canopy and understory microsites indicates that L. mcdermidiae exhibited an expected sun-to-shade acclimation but over the space of < 10 cm. Respiration, Ic, Ik, and Pmax values were significantly lower in tissues from the understory relative to tissues from the canopy of L. mcdermidiae, while photosystem I (PS I) sizes (PSU I) were significantly higher in tissues from understory microsites. Quantum efficiency was unchanged. Ahnfeltiopsis concinna, in contrast, exhibited higher α in tissues from understory rather than canopy microsites. The values of Pmax for tissues from the canopy of A. concinna were not higher than the understory, while PSU O2(PS II size) of tissues from canopy microsites were unusually higher than those of understory microsites. These characteristics suggest a high degree of irradiance stress in tissues from the canopy of A. concinna, the highest tidal alga in Hawaiian coastal zones. Acclimation to high photosynthetically active radiation and ultraviolet irradiance levels especially in tropical regions appears to be an essential mechanism(s) for stress resistance and persistence of intertidal algae. Algal turfs acclimate at microscales in part fostered by their dense stands that create sharp irradiance gradients as well as adjust physiologically to canopy irradiance levels as mechanisms for optimal photosynthetic performance and stress tolerance.  相似文献   

8.
Summary Three-dimensional empirical models were constructed, depicting the response surface of water use efficiency (WUE) of Pseudotsuga menziesii saplings in relation to different levels of both irradiance and leaf-to-air vapor pressure difference (VPD). The two models developed depict responses of (1) previous season needles during autumn, winter, and early spring and (2) current year needles during the summer. The steady-state stomatal and gas exchange responses to irradiance and VPD suggest that factors determining adaptive stomatal performance in Douglas fir are complex and may differ according to needle age, developmental stage, and season. Stomatal response to light varied seasonally, with the stomata being responsive during the summer and unresponsive during the autumn, winter, and early spring. Previous season needles exhibit higher maximum WUE, but can be less conservative in their total use of water than the more VPD-sensitive maturing needles.Observations of dynamic stomatal responses to step changes in VPD and irradiance were used to propose a simple model depicting a combined stomatal response to sudden changes in both VPD and irradiance similar to those that would occur with the passage of sunflecks in a forest canopy. Step changes in VPD caused transient stomatal movements opposite in direction to that of the final response, while step changes in irradiance resulted in movements only in the direction of the expected final response. On the basis of the model, it was hypothesized that the dynamic response to changes in VPD may serve to enhance the speed of stomatal opening and closing when changes in irradiance are rapid.  相似文献   

9.
During the 20th century, forestry practices has adversely affected lichen‐rich habitats. Mat‐forming lichens are important components of the vegetation of boreal and arctic ecosystems and are the main reindeer forage during the winter. To support the long‐term management of lichens in such habitats we developed models for predicting the growth of two common species. The lichens were transplanted across northern Scandinavia along a west‐east gradient varying in precipitation, temperature and irradiance. Growth was recorded seasonally over 16 months and ranged from ?4.8 to 34.6% and ?12.7 to 34.7% dry weight change for Cetraria stellaris and Cladina islandica, respectively. Growth was light limited below canopies with more than ca 60% cover and highest at the more humid sites when light levels were optimal. The models were based on various meteorological parameters, irradiance, physiological data and lichen hydration status; the latter was derived from a recently developed lichen hydration model. Our models' abilities to predict growth, both annually and seasonally (i.e. in summer), were evaluated in relation to their complexity and their potential usefulness from a management perspective. One parameter related to irradiance (the logarithm of site openness) was valuable in the prediction of annual growth for both species and could, in combination with precipitation, explain 52% of the variation in annual growth for C. stellaris and, in combination with total wet time and the irradiance received while wet, explain 66% of the variation in annual growth for C. islandica. The best simplified model explained 43% of the variation in annual growth for C. stellaris, using stem basal area and the annual normal temperature, and 24% for C. islandica using basal area alone. It is concluded that ensuring sufficient irradiance below the forest canopy is of crucial importance in the long‐term management of mat‐forming lichens and that simplified models can be used to identify appropriate habitats.  相似文献   

10.
Summary A model of daily canopy photosynthesis was constructed taking light and leaf nitrogen distribution in the canopy into consideration. It was applied to a canopy of Solidago altissima. Both irradiance and nitrogen concentration per unit leaf area decreased exponentially with increasing cumulative leaf area from the top of the canopy. The photosynthetic capacity of a single leaf was evaluated in relation to irradiance and nitrogen concentration. By integration, daily canopy photosynthesis was calculated for various canopy architectures and nitrogen allocation patterns. The optimal pattern of nitrogen distribution that maximizes the canopy photosynthesis was determined. Actual distribution of leaf nitrogen in the canopy was more uniform than the optimal one, but it realized over 20% more photosynthesis than that under uniform distribution and 4.7% less photosynthesis than that under the optimal distribution. Redeployment of leaf nitrogen to the top of the canopy with ageing should be more effective in increasing total canopy photosynthesis in a stand with a dense canopy than in a stand with an open canopy.  相似文献   

11.
Dipterocarps dominate the canopy of lowland tropical rain forest in South‐east Asia. Seedlings of these species form diverse assemblages on the forest floor where low irradiance severely limits their growth. Further growth depends largely upon the increased irradiance that can occur with the creation of canopy gaps. However, the response of dipterocarp seedlings to increased irradiance and their subsequent establishment in the canopy may be influenced by the availability of other resources, such as nutrient availability. We investigated the influence of nitrogen supply on aspects of the photosynthetic physiology and growth of seedlings of four dipterocarp species (Shorea leprosula, Shorea johorensis, Shorea oleosa and Dryobalanops lanceolata) growing under low irradiance, during transfer from low to high irradiance, and during subsequent growth at high irradiance. All four species increased growth and photosynthetic capacity in response to N‐supply at high irradiances but not at low irradiance approximating that which can be expected to occur in the forest understorey. When seedlings grown at low irradiances and varying N‐supply were exposed to a large increase in irradiance, all species showed some degree of initial photodamage (measured through chlorophyll fluorescence), the extent of which was similar between species but differed markedly depending on the pre‐exposure growth irradiance and N‐supply. Greater photodamage occurred in seedlings grown at lower compared with higher N‐supply and irradiance. Despite these initial difference in the extent of this photodamage, all seedlings demonstrated a similar capacity to recover from damage. However, the alterations in the photosynthetic physiology of leaves during this recovery differed between species and depended on N‐supply. Under high N‐supply all species apart from S. oleosa increased photosynthetic capacity per unit chlorophyll following exposure to high irradiance by increasing photosynthetic capacity per unit leaf area while, under low N‐supply, an increase in photosynthetic capacity per unit leaf only occurred in D. lanceolata. Our results suggest that variations in N‐availability may have a much greater impact on the relative competitiveness of dipterocarp seedlings during the regenerative phase following canopy gap formation than physiological differences between seedlings. Our results demonstrate a potentially significant role for N‐availability in the regeneration dynamics and distribution of canopy‐dominating dipterocarp species.  相似文献   

12.
Ozone pollution may reduce net carbon gain in forests, yet data from mature trees are rare and the effects of irradiance on the response of photosynthesis to ozone remain untested. We used an open-air system to expose 10 branches within the upper canopy of an 18-m-tall stand of sugar maple (Acer saccharum Marsh.) to twice-ambient concentrations of ozone (95nmol mol?1, 0900 to 1700, 1 h mean) relative to 10 paired, untreated controls (45nmol mol?1) over 3 months. The branch pairs were selected along a gradient from relatively high irradiance (PPFD 14.5 mol m?2 d?1) to deep shade (0.7mol m?2 d?1). Ozone reduced light-saturated rates of net photosynthesis (Asat) and increased dark respiration by as much as 56 and 40%, respectively. Compared to sun leaves, shade leaves exhibited greater proportional reductions in Asat and had lower chlorophyll concentrations, quantum efficiencies, and leaf absorptances when treated with ozone relative to controls. With increasing ozone dose over time, Asat became uncoupled from stomatal conductance as ratios of internal to external concentrations of carbon dioxide increased, reducing water-use efficiency. Ozone reduced net photosynthesis and impaired stomatal function, with these effects depending on the irradiance environment of the canopy leaves. Increased ozone sensitivity of shade leaves compared to sun leaves has consequences for net carbon gain in canopies.  相似文献   

13.
Dependencies of foliage arrangement and structure on relative irradiance and total height (TH) were studied in saplings ofAcer platanoides andQuercus robur. The distribution of relative foliar area and dry weight (leaf area and weight in a crown layer per total tree leaf area and weight, respectively) were examined with respect to relative height (RH, height in the crown per TH) and characterized by the Weibull function. The distributions of relative area and weight were nearly identical, and the differences between them were attributable to a systematic decline in leaf dry weight per area with increasing crown depth. Foliage distribution was similarly altered by tree size in both species; RH at foliage maximum was lower and relative canopy size (RCS, length of live crown per TH) greater in taller trees. However, the distribution was more uniform inA. platanoides than inQ. robur. Apart from the size effects, relative irradiance also influenced canopy structure; RCS increased inQ. platanoides and decreased inQ. robur with increasing irradiance. As crown architecture was modified by irradiance, foliage distribution was shifted upwards with decreasing irradiance inA. platanoides, but it was independent of irradiance inQ. robur. Higher foliage maximum at lower irradiance in more shade-tolerantA. platanoides is likely to contribute towards more efficient foliar display for light interception and increase the competitive ability of this species in light-limited environments. Consequently, these differences in crown architecture and foliage distribution may partly explain the superior behavior ofA. platanoides in understory.  相似文献   

14.
1. Coastal rivers can have long tidally influenced reaches that are affected by tides but do not contain saline water. These tidal freshwater reaches have steep geomorphic gradients where the river transitions from narrow, heavily shaded streams to wide, unshaded channels. The influence of these gradients on river ecosystem production is poorly understood. 2. We characterised gradients in irradiance, geomorphology, water clarity and chlorophyll a along 9‐ to 16‐km tidal freshwater reaches of the Newport and White Oak Rivers in North Carolina, USA, and examined the effect of nutrient enrichment on phytoplankton growth in the Newport River. Underwater irradiance was modelled at 2–4 week intervals along both rivers using measurements of the above‐canopy irradiance, canopy cover, water column light attenuation (Kd) and water depth. Suspended material (TSS), dissolved organic carbon (DOC) and chlorophyll a were sampled at 2‐week interval at five sites on the Newport River and on four dates at four sites on the White Oak River over the course of one year. 3. Phytoplankton nutrient limitation was assessed at three locations along the tidal gradient. River water was collected during March, April, June and October, and incubated in 10‐L plastic outdoor containers under ambient water temperature and sunlight. Additions of inorganic nitrogen and phosphorus served as treatments; growth rate during the 4 days of incubation was calculated from the change in chlorophyll a concentration over time. 4. Canopy cover decreased from more than 90% to <10% over the length of both tidal freshwater rivers. Water column irradiance and phytoplankton biomass increased as tree canopy cover decreased and channel width increased. Channel width exceeded predictions for non‐tidal rivers by threefold because of tidal influence. TSS and DOC decreased significantly along the length of the Newport River, but no significant gradients were observed in the White Oak River. Kd did not vary along the tidal gradient of either river. 5. Mesocosm experiments indicated that inorganic nitrogen and phosphorus enhanced the growth of phytoplankton advected from the non‐tidal river into the tidal freshwater river during spring and summer. Phytoplankton in the tidal freshwater reach were generally not nutrient limited. 6. Tidal hydrology (in the absence of saltwater) directly affected the morphology of the channel and indirectly affected biological growth and production. The significant increase in river width, irradiance and phytoplankton biomass distinguished these tidal freshwater ecosystems from their upstream (non‐tidal fluvial) counterparts, while the strong influence of riparian shading distinguished them from the saline estuaries downstream. Future development of ecosystem and biogeochemical models for tidal freshwater rivers will benefit from the linkages between geomorphology and biological processes identified here.  相似文献   

15.
Stratospheric ozone loss in mid-latitudes is expected to increase the ultraviolet-B (UVB) radiation at the earth's surface. Impacts of this expected increase will depend on many factors, including the distribution of light in other wavelengths. Measurements of the photosynthetically active radiation (PAR) and UVB irradiance were made under clear skies at an open field and under the canopy of scattered trees in a suburban area in W. Lafayette, Indiana, USA (latitude 40.5°). Results showed that when there was significant sky view, the UVB penetration into sub-canopy spaces differs greatly from that of PAR. The UVBT canopy (transmittance; irradiance below canopy/irradiance in open) was inversely related to sky view. The UVB irradiance did not vary as greatly between shaded and sunlit areas as did PAR. Analysis of measurements made near a brick wall indicated that the leaf area of a canopy and the brick wall primarily acted to block fractions of the sky radiance and contributed little scattered UVB to the horizontal plant. A model was developed to predict the UVB and PART canopy based on diffuse fraction, sky view, and porosity of the crown(s) through which the beam is penetrating. The model accounted for the UVB and PART canopy to within 0.13 and 0.05 root mean squared error (RMSE), respectively. Analysis of the errors due to model assumptions indicated that care must be taken in describing the sky radiance distribution, the porosity of trees, the penetration of diffuse radiation through porous trees, and the location of sky-obstructing trees and buildings.  相似文献   

16.
We compared different approaches for modelling height growth of individual beech seedlings in a controlled factorial experiment as well as in field data from naturally regenerated beech seedlings under the canopy of overstorey mature beech trees. Several competition indices, a model of overstorey fine root density, relative photosynthetically active radiation (PAR) values, and soil water values were used in these approaches. In the factorial experiment relative PAR and soil water content were measured and used for the prediction of seedlings height growth. In the field experiment this was done by using relative PAR and estimated fine root biomass as a surrogate for below ground resource availability. The latter approach was compared with a model where we used various competition indices representing the impact of overstorey trees on beech seedlings. Our results suggested that (1) models which combine resource based growth functions are suitable for the prediction of individual height growth of beech seedlings. Resource based models offer the opportunity to investigate on the independent multiplicative effect of irradiance and water supply and their interactions on tree seedlings. It was (2) shown that a combined model could be used not only to predict individual height growth of beech seedlings in a controlled experiment but also in the field. The model parameters of a pure light response function for the controlled factorial experiment are comparable to those obtained in the field study. The results showed (3) that the precision of predicting beech seedlings height growth is comparable between the model types tested within this study. Approximately half of the observed variation in seedlings relative height growth rate could be explained. However, the simple competition index approach provides no information on the environmental factors constraining tree seedlings growth; whereas the multiplicative combined models can be used to get a better understanding of growth dynamics in the field.  相似文献   

17.
Abstract: We investigated biomass investment in support and assimilative leaf biomass in Fagus orientalis Lipsky and F. sylvatica L., and foliar biomechanical characteristics in F. orientalis to gain mechanistic insight into the determinants of leaf inclination in Fagus along the canopy light gradient. Because the leaf laminas of Fagus are elliptical, with petioles comprising only ca. 8 % of total leaf length, a leaf was approximated as a continuous sine load. Lamina load increased with increasing seasonal integrated quantum flux density in the canopy (Qint), but leaf length was independent of irradiance. Despite greater load, leaf deflection under leaf own weight was lower for leaves at higher Qint, indicating that foliage flexural stiffness (EI), that is a variable characterizing the resistance of beam‐like structures to bending, scaled positively with irradiance. The components of EI ‐ the leaf apparent Young's modulus of elasticity (E), which is a measure of leaf material properties, and lamina second moment of area (I), which characterizes the distribution of mass around the axis of bending ‐ were also related to irradiance, with E decreasing, but I increasing with Qint. The positive scaling of I with Qint was associated with increases in leaf thickness and, in particular, with increases in the degree of leaf rolling, allowing the distribution of leaf mass further away from the neutral axis. Decreases in E were correlated with decreased leaf biomass investments in the midrib at higher irradiance. Both lamina and midrib nitrogen concentrations decreased with increasing Qint, suggesting that foliage dry mass based physiological activity was lower at higher irradiance, possibly because of an interaction of Qint with water stress in the canopy. Given that the veins also provide a pathway for water and nutrient transport to the leaf cells, as well as for carbon translocation from the leaf, lower leaf physiological activity in high light may provide an explanation for the lower biomass investment in major veins in high light. We conclude that foliage biomechanical characteristics and leaf inclination in the canopy are significantly affected by irradiance, and that the light effects may be modified by the reverse correlation between light and water availabilities in the canopy.  相似文献   

18.
Nitrogen (N) addition typically increases overall plant growth, but the nature of this response depends upon patterns of plant nitrogen allocation that vary throughout the growing season and depend upon canopy position. In this study seasonal variations in leaf traits were investigated across a canopy profile in Miscanthus (Miscanthus × giganteus) under two N treatments (0 and 224 kg ha?1) to determine whether the growth response of Miscanthus to N fertilization was related to the response of photosynthetic capacity and nitrogen allocation. Miscanthus yielded 24.1 Mg ha?1 in fertilized plots, a 40% increase compared to control plots. Photosynthetic properties, such as net photosynthesis (A), maximum rate of rubisco carboxylation (Vcmax), stomatal conductance (gs) and PSII efficiency (Fv'/Fm'), all decreased significantly from the top of the canopy to the bottom, but were not affected by N fertilization. N fertilization increased specific leaf area (SLA) and leaf area index (LAI). Leaf N concentration in different canopy layers was increased by N fertilization and the distribution of N concentration within canopy followed irradiance gradients. These results show that the positive effect of N fertilization on the yield of Miscanthus was unrelated to changes in photosynthetic rates but was achieved mainly by increased canopy leaf area. Vertical measurements through the canopy demonstrated that Miscanthus adapted to the light environment by adjusting leaf morphological and biochemical properties independent of nitrogen treatments. GPP estimated using big leaf and multilayer models varied considerably, suggesting a multilayer model in which Vcmax changes both through time and canopy layer could be adopted into agricultural models to more accurately predict biomass production in biomass crop ecosystems.  相似文献   

19.
Using optical and photosynthetic assays from a canopy access crane, we examined the photosynthetic performance of tropical dry forest canopies during the dry season in Parque Metropolitano, Panama City, Panama. Photosynthetic gas exchange, chlorophyll fluorescence, and three indices derived from spectral reflectance (the normalized difference vegetation index, the simple ratio, and the photochemical reflectance index) were used as indicators of structural and physiological components of photosynthetic activity. Considerable interspecific variation was evident in structural and physiological behavior in this forest stand, which included varying degrees of foliage loss, altered leaf orientation, stomatal closure, and photosystem II downregulation. The normalized difference vegetation index and the simple ratio were closely related to canopy structure and absorbed radiation for most species, but failed to capture the widely divergent photosynthetic behavior among evergreen species exhibiting various degrees of downregulation. The photochemical reflectance index and chlorophyll fluorescence were related indicators of photosynthetic downregulation, which was not detectable with the normalized difference vegetation index or simple ratio. These results suggest that remote sensing methods that ignore downregulation cannot capture within‐stand variability in actual carbon flux for this diverse forest type. Instead, these findings support a sampling approach that derives photosynthetic fluxes from a consideration of both canopy light absorption (e.g., normalized difference vegetation index) and photosynthetic light‐use efficiency (e.g., photochemical reflectance index). Such sampling should improve our understanding of controls on photosynthetic carbon uptake in diverse tropical forest stands.  相似文献   

20.
Seasonal plant growth patterns were compared for Rhododendron maximum L. in two contrasting subcanopy environments. The two subcanopy, above ground environments differed only in their quantity of irradiance by virtue of the relative dominance of evergreen or deciduous trees in the canopy. A third site had no canopy influence. Overall growth (shoot elongation, woody increment, leaf production) was maximized under the open (BMO) and deciduous dominated canopy (PCD). The leaf pool was significantly smaller under the evergreen dominated canopy (PCE) but average leaf area per leaf was slightly larger at PCE. Individual age-specific leaf cohorts, identified from shoot morphology, indicated increased leaf survivorship with a decreased irradiance environment. Leaf production was synchronous and rapid (1 week), followed by three weeks of leaf expansion, which created the even-aged leaf cohorts. Wood growth (diameter increment), in contrast, continued through the beginning of the winter. Reproductive effort increased with increasing irradiance environment. Significant variation in growth was observed between canopy shoot types at all three research sites. The significance of these phenological patterns is discussed in view of the variable subcanopy environment of southwestern Virginia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号