首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbit skeletal muscle phosphorylase b was separated into two fractions by column chromatography on AMP-Sepharose. The first fraction protein was eluted by glucose-6-phosphate while the second fraction protein was eluted in an AMP concentration gradient. The bulk of the protein eluate was represented by the first fraction protein. Chromatography of phosphorylase b from bovine skeletal muscle under identical conditions also resulted in two fractions, however, with a reverse correlation: the bulk protein of this fraction was eluted by AMP. It was shown that the two phosphorylase b forms eluted by glucose-6-phosphate and AMP differ by their kinetic and physico-chemical properties as well as by the SH-group reactivity. The phosphorylase b forms eluted by the nucleotide were practically uninhibited by glucose-6-phosphate. It can thus be assumed that the equilibrium between the "active" (R) and "inactive" (T) conformations of the protein changes depending on metabolic peculiarities of a given tissue used as a source for enzyme isolation.  相似文献   

2.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM).  相似文献   

3.
4.
The binding to glycogen phosphorylase b of glucose 6-phosphate and inorganic phosphate (respectively allosteric inhibitor and substrate/activator of the enzyme) were studied in the crystal at 0.3 nm (3A) resolution. Glucose 6-phosphate binds in the alpha-configuration at a site that is close to the AMP allosteric effector site at the subunit-subunit interface and promotes several conformational changes. The phosphate-binding site of the enzyme for glucose 6-phosphate involves contacts to two cationic residues, Arg-309 and Lys-247. This site is also occupied in the inorganic-phosphate-binding studies and is therefore identified as a high-affinity phosphate-binding site. It is distinct from the weaker phosphate-binding site of the enzyme for AMP, which is 0.27 nm (2.7A) away. The glucose moiety of glucose 6-phosphate and the adenosine moiety of AMP do not overlap. The results provide a structural explanation for the kinetic observations that glucose 6-phosphate inhibition of AMP activation of phosphorylase b is partially competitive and highly co-operative. The results suggest that the transmission of allosteric conformational changes involves an increase in affinity at phosphate-binding sites and relative movements of alpha-helices. In order to study glucose 6-phosphate and phosphate binding it was necessary to cross-link the crystals. The use of dimethyl malondi-imidate as a new cross-linking reagent in protein crystallography is discussed.  相似文献   

5.
In this paper we assessed the ability of modulators of the activity of glycogen phosphorylase b from the fat body of larval Manduca sexta to stabilize the enzyme against thermal denaturation. This approach has allowed us to distinguish between modulators that stabilize the enzyme, presumably through some conformational effect, from those that do not affect thermal stability. For example, 5'-AMP and 5'-IMP are both positive modulators of the enzyme and the K(m)s for AMP and IMP were similar, 0.71 and 1.09 mM, respectively. However, the V(max) for AMP (123 nmol/mg/min) was 10 times higher than the value found for IMP (12.5 nmol/mg/min) and AMP increased the thermal stability of glycogen phosphorylase b, however IMP did not increase the enzyme's thermal stability. Indeed, IMP decreased both the allosteric activation of the enzyme by AMP and the thermal protection conferred by AMP. The allosteric inhibitors ADP and ATP, which in vertebrate phosphorylase bind to the same site as AMP, both increased the thermal stability of the enzyme, however with less efficiency than AMP. Inorganic phosphate increased thermal stability, but glycogen and amylose did not. Glycerol, at 600 mM, protected the enzyme against thermal inactivation, whereas sorbitol at the same concentration did not show any effect. Among the polyols tested, trehalose was the most effective in conferring thermal stability. In fact, in the presence of 20 mM AMP and 600 mM trehalose, 90% of the enzyme activity remained after 20 min at 60 degrees C.  相似文献   

6.
Chemical and spectroscopic consequences of allosteric interactions for ligand binding to sipunculid (Phascolopsis gouldii) and brachiopod (Lingula reevii) hemerythrins (Hrs) have been investigated. Possible allosteric effectors for homotropic effects in sipunculid Hrs have been examined, but only reduction in ligand affinity is observed without cooperativity. In contrast to sipunculid Hr, L. reevii Hr binds O2 cooperatively in the pH range 7-8 and exhibits a Bohr effect. Spectroscopic comparisons of the sipunculid and brachiopod Hrs show no significant differences in the active site structures; therefore, modulation of oxygen affinity is attributable to effects linking the site to quaternary structural changes in the octamer. Oxygen equilibria can be fit with a conformational model incorporating a minimum of three states, tensed (T), relaxed (R), and an R-T hybrid. Resonance Raman spectra of L. reevii oxyHr show a shift in the peroxo stretching frequency when the pH is lowered from pH 7.7 (predominantly R oxyHr) to pH 6.3 (a mixture of R, T, and R-T hybrid), but P. gouldii Hr does not have a frequency shift under the same conditions. In contrast to hemoglobins, ligand binding to the deoxy and met forms is noncooperative for brachiopod (and sipunculid) Hrs. It is thus suggested that conformational changes in the protein are linked to the oxidation state change that accompanies oxygenation of the coupled binuclear iron site (deoxy [FeIIFeII]----oxy [FeIIIFeIII]). The total allosteric energy expended in oxygenation is about 1.4 kcal/mol, and such a shift is possible in the relaxed-tense conversion with relatively limited constraints of the iron coordination environment via the protein quaternary structure. The mechanism of cooperativity in the binuclear copper oxygen carrier hemocyanin is discussed in light of these results.  相似文献   

7.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is a trimeric enzyme that readily dissociates to the monomer. Dilution of enzyme from 20 to 0.02 microgram of protein/ml is accompanied by a greater than 50-fold increase in the specific activity (vtrimer = 0.23 nmol/min/microgram; vmonomer = 12.5 nmol/min/micrograms). Gel permeation chromatography in the presence of the substrate phosphate shows the enzyme to be predominantly trimeric at 50 mM Pi and predominantly monomeric at 100 mM Pi, when experiments are done at 24 degrees C. No significant dissociation was observed at 4 degrees C with Pi or at either temperature with the substrate inosine. As measured by dissociation, the L0.5 for Pi is 88 mM and thus significantly higher than the Km of 3.1 mM for Pi. Enzyme activity as a function of phosphate concentration showed negative cooperativity, but the conformational response measured by the change in native Mr during dissociation showed positive cooperatively toward Pi. These data support a model for two separate phosphate binding sites on the enzyme. The activity and stability of purine nucleoside phosphorylase are quite sensitive to the concentration of the enzyme as well as appropriate substrates. Although the monomer is interpreted as being a fully active form of the enzyme, the data in general are most consistent with the enzyme functioning in vivo as a regulated trimer.  相似文献   

8.
Felodipine is a fluorescent dihydropyridine Ca2+-antagonist. It binds to calmodulin in a Ca2+-dependent manner, and undergoes a fluorescence increase which allows us to monitor its interaction with calmodulin. Hydrophobic ligands including the calmodulin antagonist, R24571 and Ca2+ antagonists, prenylamine and diltiazem, bind to calmodulin and potentiate felodipine binding by as much as 20 fold. These studies suggest that allosteric interactions occur among different drug binding sites on calmodulin. Our results are discussed in terms of the mechanism of action of calmodulin.  相似文献   

9.
《Molecular cell》2022,82(11):2021-2031.e5
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

10.
11.
12.
Subunit interactions and the allosteric response in phosphorylase.   总被引:1,自引:0,他引:1       下载免费PDF全文
The contribution of intersubunit interactions to allosterically induced conformational changes in phosphorylase are considered. Phosphorylase a, Pa (phosphorylated at Ser-14), is significantly in the active (R) conformation, while phosphorylase b, Pb (nonphosphorylated), is predominantly in the inactive (T) conformation. The structure of glucose-inhibited (T) Pa has been determined at 2.5-A resolution and atomic coordinates have been measured. These data have been used to calculate the solvent accessible surface area at the subunit interface and map noncovalent interactions between protomers. The subunit contact involves only 6% of the Pa monomer surface, but withdraws an area of 4,600 A2 from solvent. The contact region is confined to the N-terminal (regulatory) domain of the subunit. Half of the residues involved are among the 70 N-terminal peptides. A total of approximately 100 atoms take part in polar or nonpolar contacts of less than 4.0 A with atoms of the symmetry-related monomer. The contact surface surrounds a central cavity at the core of the interface of sufficient volume to accommodate 150-180 solvent molecules. There are four intersubunit salt bridges. Two of these (Arg 10/Asp 32, Ser-14-P/Arg 43) are interactions between the N-terminus of one protomer with an alpha-helix loop segment near the N-terminus of the symmetry-related molecule. These two are relatively solvent accessible. The remainder (Arg 49/Glu 195, Arg 184/Asp 251) are nearer the interface core and are less accessible. The salt bridges at the N-terminus are surrounded by the polar and nonpolar contacts which may contribute to their stability. Analysis of the difference electron density between the isomorphous Pa and Pb crystal structures reveals that the N-terminal 17 residues of Pb are disordered. Pb thus lacks two intermolecular and one intersubunit (Ser-14-P/Arg 69) salt linkage present in Pa. The absence of these interactions in Pb is manifested in the difference in the free energy of T leads to R activation, which is 4 kcal more than that for Pa. Difference Fourier analysis of the T leads to R transition in substrate-activated crystals of Pa suggests that the 70 N-terminal residues undergo a concerted shift towards the molecular core; salt bridges are probably conserved in the transition. It is proposed that the N-terminus, when "activated" by phosphorylation (via a specific kinase) behaves as an intramolecular "effector" of the R state in phosphorylase and serves as the vehicle of homotropic cooperativity between subunits of the dimer.  相似文献   

13.
14.
1. The interaction of rabbit muscle glycogen phosphorylase b with pairs of ligands has been examined. 2. The electron spin resonance spectrum of a spin label, covalently attached to the protein, provided information about dissociation constants, formation of ternary complexes and both negative and positive interactions between different ligand pairs. 3. AMP competes with a series of nucleotides (ADP, ATP, CMP aand cytosine) but with adenosine a ternary enzyme - AMP - adenosine complex can be formed. 4. ADP binding is tight and ADP inhibits the AMP activation of phosphorylase b in a physiologically important concentration range. 5. The substrates glucose 1-phosphate and glycogen tighten AMP binding in the ternary complex as does the competitive inhibitor UDPG. Inorganic phosphate is different in this respect. Gluconolactone, a transition state analogue, competes with glucose 1-phosphate (but not with glycogen) but does not prevent completely the binding of the sugar phosphate. 6. The effect of glucose b-phosphate on phosphorylase is rather complex as it 'formally competes' with both AMP and UDPG probably mediated by a conformational changes and not by 'direct' interactions with these two ligands. Glycerol 2-phosphate, a commonly used buffer for phosphorylase, also shows complex interactions.  相似文献   

15.
16.
17.
Allosteric inhibition of protein tyrosine phosphatase 1B   总被引:8,自引:0,他引:8  
Obesity and type II diabetes are closely linked metabolic syndromes that afflict >100 million people worldwide. Although protein tyrosine phosphatase 1B (PTP1B) has emerged as a promising target for the treatment of both syndromes, the discovery of pharmaceutically acceptable inhibitors that bind at the active site remains a substantial challenge. Here we describe the discovery of an allosteric site in PTP1B. Crystal structures of PTP1B in complex with allosteric inhibitors reveal a novel site located approximately 20 A from the catalytic site. We show that allosteric inhibitors prevent formation of the active form of the enzyme by blocking mobility of the catalytic loop, thereby exploiting a general mechanism used by tyrosine phosphatases. Notably, these inhibitors exhibit selectivity for PTP1B and enhance insulin signaling in cells. Allosteric inhibition is a promising strategy for targeting PTP1B and constitutes a mechanism that may be applicable to other tyrosine phosphatases.  相似文献   

18.
Recent studies on G-protein-coupled receptors revealed that they can dimerize. However, the role of each subunit in the activation process remains unclear. The gamma-amino-n-butyric acid type B (GABA(B)) receptor is comprised of two subunits: GB1 and GB2. Both consist of an extracellular domain (ECD) and a heptahelical domain composed of seven transmembrane alpha-helices, loops and the C-terminus (HD). Whereas GB1 ECD plays a critical role in ligand binding, GB2 is required not only to target GB1 subunit to the cell surface but also for receptor activation. Here, by analysing chimeric GB subunits, we show that only GB2 HD contains the determinants required for G-protein signalling. However, the HD of GB1 improves coupling efficacy. Conversely, although GB1 ECD is sufficient to bind GABA(B) ligands, the ECD of GB2 increases the agonist affinity on GB1, and is necessary for agonist activation of the receptor. These data indicate that multiple allosteric interactions between the two subunits are required for wild-type functioning of the GABA(B) receptor and highlight further the importance of the dimerization process in GPCR activation.  相似文献   

19.
Allosteric interactions of yeast pyruvate kinase as a function of pH   总被引:4,自引:0,他引:4  
H J Wieker  B Hess 《Biochemistry》1971,10(7):1243-1248
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号