首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the recA, recB, and recC genes of Escherichia coli K-12 were surveyed to ascertain whether or not they are suppressed by nonsense suppressors. Several mutations which map in or near the recA gene, but have not been called recA mutations, were also surveyed. An amber recB mutation, recB156, and an amber recC mutation, recC155, were isolated. One recB mutation, recB95, and four recC mutations, recC22, recC38, recC82, and recC83, were found to be suppressed by a UGA suppressor. In addition to the previously isolated amber recA mutation recA99, two other recA mutations, recA52 and recA123, were found to be suppressed by amber suppressor supD32 but not by supE44.  相似文献   

2.
Three classes of nonidentical streptomycin-resistant mutations were distinguished in Escherichia coli by their effect on the efficiency of suppression by an amber suppressor gene, sup E. The first class of mutation caused a strong restriction in efficiency of suppression of an amber codon in various cistrons of phage lambda and in an alkaline phosphatase structural gene of E. coli. The second class caused weak restriction, and the third class caused no restriction. The restrictive effect of the streptomycin resistance mutation of the first class on the sup E gene was reduced by addition of streptomycin. This mutation had little effect on efficiencies of suppression by amber suppressor genes sup D and sup F. Analyses on the alkaline phosphatase formed in the suppressor strain indicated that mutation to restrictive streptomycin resistance causes a reduction in translation of the amber codon in the alkaline phosphatase structural gene.  相似文献   

3.
The protein product of T4 gene 63 catalyzes both the attachment of tail fibers to fiberless phage particles and the ligation of single-stranded RNA (Snopek at al., Proc. Natl. Acad. Sci. U.S.A. 74:3355-3359, 1977). To investigate whether the gene 63 product has a role in nucleotide metabolism, we isolated false revertants of amM69 in gene 63. We screened for revertants that could grow at 30 degrees C but not at 43 degrees C on Escherichia coli OK305 when nucleotides were limiting. These false revertants contained the original mutation in gene 63 and new suppressor mutations. Some of these suppressor mutations caused temperature sensitivity by themselves, allowing single mutants carrying the suppressor to be recognized and isolated. The results of mapping and complementation studies indicated that most of these ts suppressors were in the t gene (lysis), one was in gene 5 (baseplate), and one was in gene 18 (sheath). The mutation in gene 18, tsDH638, suppressed three different amber mutations in gene 63 but did not suppress amber mutations in several other genes. None of the suppressors that were characterized were in genes with known functions in nucleotide metabolism. However, an intriguing property of these false revertants was that they were very sensitive to hydroxyurea, an inhibitor of nucleotide metabolism.  相似文献   

4.
Of all the Escherichia coli tRNA genes that can give rise to an amber or an ochre suppressor by a single-nucleotide mutation, only the tRNAGlu genes have not been observed to do so. A study of the relationship between the sequences of tRNAs and the codons they translate predicts that the ochre suppressor derived from tRNAGlu would function very poorly on the ribosome. We have used site-specific mutagenesis to create the gene for such a tRNA in order to test this prediction. We cloned the tRNAGlu-Suoc gene into a high copy number plasmid, under control of the lacUV5 promoter. The mutant tRNA suppresses both amber and ochre nonsense mutations. As predicted, it is less efficient than other suppressors expressed under similar conditions.  相似文献   

5.
A Salmonella typhimurium strain was given the amber mutation hisC527 by transduction, made galactose-negative by mutation, then infected with the F'-1-gal factor. Of 107 spontaneous and mutagen-induced histidine-independent mutants tested, 3 proved to result from suppressor mutations within the F' factor. The mutant F' factors, when transferred to S. typhimurium and E. coli auxotrophs, suppressed amber and ochre but not UGA or missense mutants, and are inferred to carry ochre suppressor genes. Attempts to isolate an F' amber suppressor mutant were unsuccessful. A suppressor F' factor was transferred to 14 rough mutants which had been isolated from LT2 hisC527 (amber) by selection for resistance to phage P22.c2. One rough mutant was partly suppressed, as shown by its acquisition of O agglutinability and by alterations in its phage resistance pattern. Phage P22h grown on the suppressed mutant contransduced its rf. gene with cysE(+) and with pyrE(+), and the affected locus is inferred to be rfaL. Both the original and the mutant F' factors conferred resistance to the rough-specific phage Br60, which is therefore "female-specific."  相似文献   

6.
M Kimura  T Yura    T Nagata 《Journal of bacteriology》1980,144(2):649-655
Specialized transducing phage lambda (formula, see text) dnaA-2 was mutagenized, and two derivatives designated lambda (formula) dnaA17(Am) and lambda (formula) dnaA452(Am) were obtained. They did not transduce such mutations as dnaA46, dnaA167, and dnaA5 when an amber suppressor was absent, but they did so in the presence of an amber suppressor. By contrast, they transduced the dna-806 and tna-2 mutations in the absence of an active amber suppressor. The dna-806 and tna-2 mutations are known to be located very close to the dnaA gene, but in separate cistrons. When ultraviolet light-irradiated uvrB cells were infected with the derivative phages and proteins specified by them were analyzed by gel electrophoresis, a 50,000-dalton protein was found to be specifically missing if an amber suppressor was absent. This protein was synthesized when an amber suppressor was present. The dnaA17(Am) mutation on the transducing phage genome was then transferred by genetic recombination onto the chromosome of an Escherichia coli strain carrying a temperature-sensitive amber suppressor supF6(Ts), yielding a strain which was temperature sensitive for growth and deoxyribonucleic acid replication. The temperature-sensitive trait was suppressed by supD, supE, or supF. We conclude that, most likely, the derivative phages acquired amber mutations in the dnaA gene whose product is a 50,000-dalton protein as identified by gel electrophoretic analysis.  相似文献   

7.
We have constructed synthetic genes encoding different Escherichia coli suppressor tRNAs for use in amino acid substitution studies and protein engineering. We used oligonucleotides to assemble the genes for different tRNAs with the anticodon 5' CTA 3'. The suppressor genes are expressed from a synthetic promoter derived from the promoter sequence of the E. coli lipoprotein gene. The genes have been used to suppress an amber mutation in a protein coding sequence, and the resulting altered protein has been subjected to sequence analysis to determine the nature of the amino acid inserted at the amber site. Twelve amino acids can now be added in response to the amber codon. We have employed these suppressors to study amino acid substitutions in the lac repressor.  相似文献   

8.
The presence of antibiotic resistance genes in the delivered plasmids is one of the drawbacks of modern gene therapy and DNA vaccine applications. Here, we describe a strategy that allows for plasmid selection in bacterial hosts, without the requirement of any selection marker. Several bacterial strains were modified, so that the plasmid's replicational inhibitor RNA I could suppress the translation of a growth essential gene by RNA-RNA antisense reaction. An essential gene (murA) was modified such that a repressor protein (tetR) would hamper its expression. Only in the presence of plasmid and, hence, RNA I, was tetR turned down and murA expressed. Different commercially available plasmids could be selected by various modified Escherichia coli strains. We further designed a minimalistic plasmid devoid of any selection marker. All of the clones (n=6) examined, when the modified strain JM109-murselect was used for selection, contained plasmids. Thus, we have designed bacterial host strains that for the first time serve to select and maintain plasmids without the use of any selection marker or other additional sequence on the plasmid. Consequently, such plasmids may not only be safer, but due to their decreased size, advantages for the manufacturer and higher transfection efficiencies are anticipated.  相似文献   

9.
Organisms of Chlamydia spp. are obligate intracellular, gram-negative bacteria with a dimorphic developmental cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial anomaly refers to the fact that cell wall-active antibiotics inhibit Chlamydia growth and peptidoglycan (PG) synthesis genes are present in the genome, yet there is no biochemical evidence for synthesis of PG. In this work, we undertook a genetics-based approach to reevaluate the chlamydial anomaly by characterizing MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase that catalyzes the first committed step of PG synthesis. The murA gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible, glucose-repressible ara promoter and transformed into Escherichia coli. After transduction of a lethal DeltamurA mutation into the strain, viability of the E. coli strain became dependent upon expression of the C. trachomatis murA. DNA sequence analysis of murA from C. trachomatis predicted a cysteine-to-aspartate change in a key residue within the active site of MurA. In E. coli, the same mutation has previously been shown to cause resistance to fosfomycin, a potent antibiotic that specifically targets MurA. In vitro activity of the chlamydial MurA was resistant to high levels of fosfomycin. Growth of C. trachomatis was also resistant to fosfomycin. Moreover, fosfomycin resistance was imparted to the E. coli strain expressing the chlamydial murA. Conversion of C. trachomatis elementary bodies to reticulate bodies and cell division are correlated with expression of murA mRNA. mRNA from murB, the second enzymatic reaction in the PG pathway, was also detected during C. trachomatis infection. Our findings, as well as work from other groups, suggest that a functional PG pathway exists in Chlamydia spp. We propose that chlamydial PG is essential for progression through the developmental cycle as well as for cell division. Elucidating the existence of PG in Chlamydia spp. is of significance for the development of novel antibiotics targeting the chlamydial cell wall.  相似文献   

10.
Mutants in T4 genes 46 and 47 exhibit early cessation of deoxyribonucleic acid (DNA) synthesis ("DNA arrest") and decreased synthesis of late proteins and phage. In addition, mutants in genes 46 and 47 fail to degrade host DNA to acidsoluble products. It is shown here that this complex phenotype can be partially suppressed by mutation of a T4 gene external to genes 46 and 47 which has been named das for "DNA arrest suppressor." The das mutations were discovered as third-site mutations in spontaneous pseudorevertants of [46, 47] mutants; the pseudorevertants make small plaques on Escherichia coli B, whereas [46, 47] mutants make none. The [das, 46, 47] triple mutant exhibits increased DNA, late protein, and viable phage production compared to the double mutant [46, 47]. The [das, 46, 47] mutant also degrades more of the host DNA to acid-soluble products than does the [46, 47] mutant. The suppressor effect of the das mutation appears to be gene-specific: it suppresses both amber and temperature-sensitive mutations in genes 46 and 47 and does not suppress amber mutations in any of the other genes tested. The [das] single mutants make normal-sized plaques on E. coli B and exhibit nearly normal host DNA degradation, DNA synthesis, late protein synthesis, and viable phage production. The das mutations either define a new gene between genes 33 and 34 or are special mutations within gene 33.  相似文献   

11.
12.
A shuttle vector, pZ189, carrying a bacterial suppressor tRNA marker gene, was irradiated with health lamp (HL) light containing UV-B. Plasmid mutations were scored by transforming an indicator strain of Escherichia coli carrying a suppressive blue amber mutation in the beta-galactosidase gene. Plasmid survival was also measured by transforming activity of the indicator strain. The majority of mutations induced by HL light were GC-AT transitions (69%) and the rest were transversions (31%). Some hot-spots in the mutations were observed by sequencing the suppressor gene. Mutagenic specificity in DNA base sequences induced by HL in E. coli agrees well with previous reports about 254-nm or 313-nm light effects on mammalian cells. This agreement may depend on the substitution of the inserted base instead of a G residue at the opposite site of a damaged C residue from conformational change of DNA structure in both bacterial and mammalian cells.  相似文献   

13.
Premutational lesions produced by ultraviolet radiation in the Gln2 tRNA genes of E. coli B/r show differing sensitivities to a mutation avoidance phenomenon known as mutation frequency decline (MFD). A mutation event that changes the wild-type gene to an amber (UAG) suppressor is normally sensitive to MFD. Mutation of this amber suppressor to an ochre (UAA) suppressor is not sensitive to MFD. These two mutation events occur in the same anticodon region of the DNA. The dissimilarity of MFD sensitivity between these two mutations may result because the respective premutational photoproducts for the two are located in opposite strands of duplex DNA. To examine the effect of strand position of the premutational lesions on MFD, recombinant lambda phage were constructed that contained the amber suppressor as a mutation target in the two possible orientations. Comparison of MFD in bacterial lysogens containing either of the two types of recombinant prophage indicated that reversing the orientation of the target sequence relative to adjacent bacterial DNA had no effect on MFD. Since rotational inversion of the target sequence did not alter the sensitivity to MFD of mutation occurring at the cloned target gene, the antimutation process inherent to MFD can not be attributed to an asymmetrical interaction between the template strands and the DNA-replication complex.  相似文献   

14.
We describe the isolation and characterization of amber mutations in the lexA gene of Escherichia coli K-12. These mutations, designated spr(Am), were isolated and characterized in a lexA tif sfi genetic background. They abolished the sensitivity of the strain to UV light and resulted in high rates of synthesis of recA protein. Phage lambda+ failed to lysogenize the strains as observed with similar strains carrying non-amber spr mutations described previously, thereby indicating a constitutive expression of the phage induction pathway. Introduction of an amber suppressor mutation into a strain bearing the spr(Am) mutation restored expression of the LexA mutant phenotype. We conclude that spr mutations either inactivate or prevent synthesis of the lexA gene product and that loss of this product results in constitutive expression of the E. coli induction system in the tif sfi genetic background.  相似文献   

15.
During the genetic mapping of a mutation in the pheS gene which confers temperature sensitivity on a strain of Escherichia coli K-12, an extragenic suppressor was discovered which restores ability to grow at the restrictive temperature. The suppressor, which has been named supQ, is cotransduced by bacteriophage P1 with the purE marker. SupQ does not suppress a number of amber or ochre mutations. SupQ(-) is carried by the prototrophic Hfr Hayes strain AB259, and the presence of the supQ(-) allele impairs the growth of this strain at 42 C.  相似文献   

16.
A M Slutskii  V K Gordeev 《Genetika》1978,14(10):1706-1713
Effects of mutations in genes PolA, RecA, RecB and RecC of Escherichia coli on the recombination frequencies between rII markers of T4 have been studied in conditions of partial inhibition of some early functions. It was found that the presence of the mutations in genes PolA or RecA decreased significantly the recombination frequency of phage amber mutant in the gene 43 (DNA polymerase), increased it in the case of amber mutation in the gene 46 (exonuclease) and had no effect on the recombination of amber mutants in genes 30, 32, 33, 41, 42, 45, 44, 52. None of the amber mutants studied changed recombination frequencies in the presence of the mutations in genes RecB or RecC. Possible mechanisms of some of the effects observed are discussed.  相似文献   

17.
We describe the generation of mammalian cell lines carrying amber suppressor genes. Nonsense mutants in the herpes simplex virus thymidine kinase (HSV tk) gene, the Escherichia coli xanthine-guanine phosphoribosyl transferase (Eco-gpt) gene and the aminoglycoside 3′ phosphotransferase gene of the Tn5 transposon (NPT-II) were isolated and characterized. Each gene was engineered with the appropriate control signals to allow expression in both E. coli and mammalian cells. Expression in E. coli made possible the use of well developed bacterial and phage genetic manipulations to isolate and characterize the nonsense mutants. Once characterized, the nonsense mutants were transferred into mammalian cells by microinjection and used, in turn, to select for amber suppressor genes. Xenopus laevis amber suppressor genes, prepared by site-specific mutagenesis of a normal X. laevis tRNA gene, were microinjected into the above cell lines and selected for the expression of one or more of the amber mutant gene products. The resulting cell lines, containing functional amber suppressor genes, are stable and exhibit normal growth rates.  相似文献   

18.
19.
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that are highly specific for their tRNA substrates. Here, we describe the expansion of a class IIb aaRS-tRNA specificity by a genetic selection that involves the use of a modified tRNA displaying an amber anticodon and the argE(amber) and lacZ(amber) reporters. The study was performed on Escherichia coli aspartyl-tRNA synthetase (AspRS) and amber tRNA(Asp). Nine AspRS mutants able to charge the amber tRNA(Asp) and to suppress the reporter genes were selected from a randomly mutated library. All the mutants exhibited a new amber tRNA(Asp) specificity in addition to the initial native tRNA(Asp). Six mutations were found in the anticodon-binding site located in the N-terminal OB-fold. The strongest suppressor was a mutation of residue Glu-93 that contacts specifically the anticodon nucleotide 34 in the crystal structure. The other mutations in the OB-fold were found at close distance from the anticodon in the so-called loop L45 and strand S1. They concern residues that do not contact tRNA(Asp) in the native complex. In addition, this study shows that suppressors can carry mutations located far from the anticodon-binding site. One such mutation was found in the synthetase hinge-module where it increases the tRNA(Asp)-charging rate, and two other mutations were found in the prokaryotic-specific insertion domain and the catalytic core. These mutants seem to act by indirect effects on the tRNA acceptor stem binding and on the conformation of the active site of the enzyme. Altogether, these data suggest the existence of various ways for modifying the mechanism of tRNA discrimination.  相似文献   

20.
Isolation of nonsense suppressor mutants in Pseudomonas.   总被引:31,自引:13,他引:18       下载免费PDF全文
A strain of Escherichia coli harboring the drug resistance plasmid RP1 was treated with the mutagen N-methyl-N-nitro-N-nitro-N-nitrosoguanidine, and mutants were isolated in which ampicillin resistance had been lost due to an amber mutation in the plasmid. One of these mutants was again treated, and a strain was isolated in which tetracycline resistance was also lost due to an amber mutation in the plasmid. The plasmid containing amber mutations in the genes amp and tet was named pLM2. This plasmid could be transferred to strains of Pseudomonas aeruginosa, P. phaseolicola, and P. pseudoalcaligenes. Mutants resistant to ampicillin and tetracycline could not be obtained from P. phaseolicola carrying pLM2. However, strains of E. coli, P. aeruginosa, and P. pseudoalcaligenes carrying the plasmid did produce mutants simultaneously resistant to both antibiotics. All of the mutants of E. coli had developed nonsense suppressors since they became phenotypically lac+, although harboring a lac amber mutation, and formed plaques with amber mutants of phages PRR1 and PRD1 that attack organisms carrying RP1. Approximately 20% of the resistant mutants of P. aeruginosa and P. pseudoalcaligenes were sensitive to the amber mutant of PRD1. These mutants were of variable stability and grew somewhat more slowly than their parent strains. One of the suppressor mutants of P. pseudoalcaligenes, designated ERA(pLM2)S4, was used for the isolation of nonsense mutants of bacteriophage PHA6, a virus having a segmented genome of double-stranded ribonucleic acid and an envelope of lipids and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号