首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was undertaken to identify proteins interacting with PrP(C) that could provide new insights into its physiological functions and pathological role. Human PrP(C) was expressed in prion protein-deficient murine hippocampus (HpL3-4) neuronal cells. The PrP(C) along with its interacting proteins were affinity purified using STrEP-Tactin-chromatography, in-gel digested, and identified by Q-TOF MS/MS analysis. Forty-three proteins appeared to interact with PrP(C) in this neuronal cell line. Of these, 15 were already known for their interaction with PrP(C) or PrP(Sc), while 28 new proteins were identified. Interaction of a novel interacting partner of GTPase family-Rab7a, having a suggested role in vesicle trafficking, was further investigated using confocal laser scanning microscopy and reverse coimmunoprecipitation. Both reverse coimmunoprecipitation and immunofluorescence results confirmed potential interaction of Rab7a with the PrP(C). siRNA against the Rab7a gene decreased expression of Rab7a protein, in PrP(C) expressing HpL3-4 and SH-SY5Y cells. This depleted Rab7a expression led to the enhanced accumulation of PrP(C) in Rab9 positive endosomal compartments and consequently an increased colocalization between PrP(C)/Rab9. However, the Rab9 accumulated PrP(C) remained sensitive to proteinase-K digestion. The work described demonstrated for the first time that Rab7a interacts with PrP(C) and highlighted the involvement of endosomal compartments in the trafficking and regulation of PrP(C).  相似文献   

2.
Huntington disease (HD) is a dominantly inherited neurodegenerative disease caused by a polyglutamine expansion in the protein huntingtin (Htt). Striatal and cortical neuronal loss are prominent features of this disease. No disease-modifying treatments have been discovered for HD. To identify new therapeutic targets in HD, we screened a kinase inhibitor library for molecules that block mutant Htt cellular toxicity in a mouse HD striatal cell model, Hdh(111Q/111Q) cells. We found that diacylglycerol kinase (DGK) inhibitor II (R59949) decreased caspase-3/7 activity after serum withdrawal in striatal Hdh(111Q/111Q) cells. In addition, R59949 decreased the accumulation of a 513-amino acid N-terminal Htt fragment processed by caspase-3 and blocked alterations in lipid metabolism during serum withdrawal. To identify the diacylglycerol kinase mediating this effect, we knocked down all four DGK isoforms expressed in the brain (β, γ, ε, and ζ) using siRNA. Only the knockdown of the family member, DGKε, blocked striatal Hdh(111Q/111Q)-mediated toxicity. We also investigated the significance of these findings in vivo. First, we found that reduced function of the Drosophila DGKε homolog significantly improves Htt-induced motor dysfunction in a fly model of HD. In addition, we find that the levels of DGKε are increased in the striatum of R6/2 HD transgenic mice when compared with littermate controls. Together, these findings indicate that increased levels of kinase DGKε contribute to HD pathogenesis and suggest that reducing its levels or activity is a potential therapy for HD.  相似文献   

3.
Huntington's disease (HD) is one of a number of neurodegenerative disorders caused by expansion of polyglutamine-encoding CAG repeats within specific genes. Huntingtin, the protein product of the HD gene, is widely expressed in neural and nonneural human and rodent tissue. The function of the wild-type or mutated form of huntingtin is currently unknown. We have observed that relative to naive and male animals, huntingtin protein was significantly increased in the arcuate nucleus of postpartum rats. Using an oligonucleotide probe, in situ and Northern blot hybridization confirmed the expression of huntingtin mRNA. Quantification of the in situ hybridization signal in the arcuate nucleus revealed an approximate sevenfold increase in the expression of huntingtin mRNA in postpartum, lactating animals compared with naive female or male animals. Emulsion autoradiography and immunohistochemistry revealed that the cells with elevated huntingtin expression had a stellate conformation that morphologically resembled astrocytes. Dual label immunofluorescence immunohistochemistry demonstrated the colocalization of huntingtin and glial fibrillary acidic protein in these cells, confirming that they were astrocytes. Astrocytes expressing huntingtin were consistently found in close apposition to neuronal soma, suggesting interactions between these cell types. During the perinatal and postnatal period, the hypothalamus undergoes alterations in metabolic function. Our results support the idea of glia-induced metabolic changes in the hypothalamus. These results provide the first demonstration of naturally occurring changes in the expression of the Huntington's disease gene in the brain and suggest that huntingtin may play an important role in the processes that regulate neuroendocrine function.  相似文献   

4.
5.
The pathway of transport of the cystic fibrosis transmembrane regulator (CFTR) through the early exocytic pathway has not been examined. In contrast to most membrane proteins that are concentrated during export from the ER and therefore readily detectable at elevated levels in pre-Golgi intermediates and Golgi compartments, wild-type CFTR could not be detected in these compartments using deconvolution immunofluorescence microscopy. To determine the basis for this unusual feature, we analyzed CFTR localization using quantitative immunoelectron microscopy (IEM). We found that wild-type CFTR is present in pre-Golgi compartments and peripheral tubular elements associated with the cis and trans faces of the Golgi stack, albeit at a concentration 2-fold lower than that found in the endoplasmic reticulum (ER). delta F508 CFTR, a mutant form that is not efficiently delivered to the cell surface and the most common mutation in cystic fibrosis, could also be detected at a reduced concentration in pre-Golgi intermediates and peripheral cis Golgi elements, but not in post-Golgi compartments. Our results suggest that the low level of wild-type CFTR in the Golgi region reflects a limiting step in selective recruitment by the ER export machinery, an event that is largely deficient in delta F508. We raise the possibility that novel modes of selective anterograde and retrograde traffic between the ER and the Golgi may serve to regulate CFTR function in the early secretory compartments.  相似文献   

6.
Two new members (Sar1a and Sar1b) of the SAR1 gene family have been identified in mammalian cells. Using immunoelectron microscopy, Sar1 was found to be restricted to the transitional region where the protein was enriched 20-40-fold in vesicular carriers mediating ER to Golgi traffic. Biochemical analysis revealed that Sar1 was essential for an early step in vesicle budding. A Sar1-specific antibody potently inhibited export of vesicular stomatitis virus glycoprotein (VSV-G) from the ER in vitro. Consistent with the role of guanine nucleotide exchange in Sar1 function, a trans-dominant mutant (Sar1a[T39N]) with a preferential affinity for GDP also strongly inhibited vesicle budding from the ER. In contrast, Sar1 was not found to be required for the transport of VSV-G between sequential Golgi compartments, suggesting that components active in formation of vesicular carriers mediating ER to Golgi traffic may differ, at least in part, from those involved in intra-Golgi transport. The requirement for novel components at different stages of the secretory pathway may reflect the recently recognized differences in protein transport between the Golgi stacks as opposed to the selective sorting and concentration of protein during export from the ER.  相似文献   

7.
Huntington disease phenocopy is a familial prion disease   总被引:2,自引:0,他引:2       下载免费PDF全文
Huntington disease (HD) is a common autosomal dominant neurodegenerative disease with early adult-onset motor abnormalities and dementia. Many studies of HD show that huntingtin (CAG)n repeat-expansion length is a sensitive and specific marker for HD. However, there are a significant number of examples of HD in the absence of a huntingtin (CAG)n expansion, suggesting that mutations in other genes can provoke HD-like disorders. The identification of genes responsible for these "phenocopies" may greatly improve the reliability of genetic screens for HD and may provide further insight into neurodegenerative disease. We have examined an HD phenocopy pedigree with linkage to chromosome 20p12 for mutations in the prion protein (PrP) gene (PRNP). This reveals that affected individuals are heterozygous for a 192-nucleotide (nt) insertion within the PrP coding region, which encodes an expanded PrP with eight extra octapeptide repeats. This reveals that this HD phenocopy is, in fact, a familial prion disease and that PrP repeat-expansion mutations can provoke an HD "genocopy." PrP repeat expansions are well characterized and provoke early-onset, slowly progressive atypical prion diseases with an autosomal dominant pattern of inheritance and a remarkable range of clinical features, many of which overlap with those of HD. This observation raises the possibility that an unknown number of HD phenocopies are, in fact, familial prion diseases and argues that clinicians should consider screening for PrP mutations in individuals with HD-like diseases in which the characteristic HD (CAG)n repeat expansions are absent.  相似文献   

8.
Mitochondrial dysfunction is believed to participate in Huntington's disease (HD) pathogenesis. Here we compare the bioenergetic behavior of forebrain mitochondria isolated from different transgenic HD mice (R6/2, YAC128 and Hdh150 knock-in) and wild-type littermates with the first determination of in situ respiratory parameters in intact HD striatal neurons. We assess the Ca2+-loading capacity of isolated mitochondria by steady Ca2+-infusion. Mitochondria from R6/2 mice (12-13 weeks) and 12 months YAC128, but not homozygous or heterozygous Hdh150 knock-in mice (15-17 weeks), exhibit increased Ca2+-loading capacity when compared with respective wild-type littermates. In situ mitochondria in intact striatal neurons show high respiratory control. Moreover, moderate expression of full-length mutant huntingtin (in Hdh150 knock-in heterozygotes) does not significantly impair mitochondrial respiration in unstimulated neurons. However, when challenged with energy-demanding stimuli (NMDA-receptor activation in pyruvate-based media to accentuate the mitochondria role in Ca2+-handling), Hdh150 neurons are more vulnerable to Ca2+-deregulation than neurons from their wild-type littermates. These results stress the importance of assessing HD mitochondrial function in the cellular context.  相似文献   

9.
Huntingtin is a large membrane-associated scaffolding protein that associates with endocytic and exocytic vesicles and modulates their trafficking along cytoskeletal tracks. Although the progression of Huntington’s disease is linked to toxic accumulation of mutant huntingtin protein, loss of wild-type huntingtin function might also contribute to neuronal cell death, but its precise function is not well understood. Therefore, we investigated the molecular role of huntingtin in exocytosis and observed that huntingtin knockdown in HeLa cells causes a delay in endoplasmic reticulum (ER)-to-Golgi transport and a reduction in the number of cargo vesicles leaving the trans-Golgi network. In addition, we found that huntingtin is required for secretory vesicle fusion at the plasma membrane. Similar defects in the early exocytic pathway were observed in primary fibroblasts from homozygous Htt140Q/140Q knock-in mice, which have the expansion inserted into the mouse huntingtin gene so lack wild-type huntingtin expression. Interestingly, heterozygous fibroblasts from a Huntington’s disease patient with a 180Q expansion displayed no obvious defects in the early secretory pathway. Thus, our results highlight the requirement for wild-type huntingtin at distinct steps along the secretory pathway.KEY WORDS: Exocytosis, Huntingtin, ER, Golgi, Vesicle fusion  相似文献   

10.
Yeast Sec12p, a type II transmembrane glycoprotein, is required for formation of transport vesicles from the endoplasmic reticulum (ER). Biochemical and morphological analyses have suggested that Sec12p is localized to the ER by two mechanisms: static retention in the ER and dynamic retrieval from the early region of the Golgi apparatus. The rer1 mutant we isolated in a previous study mislocalizes the authentic Sec12p to the later compartments of the Golgi. To understand the role of RER1 on Sec12p localization, we cloned the gene and determined its reading frame. RER1 encodes a hydrophobic protein of 188 amino acid residues containing four putative membrane spanning domains. The rer1 null mutant is viable. Even in the rer1 disrupted cells, immunofluorescence of Sec12p stains the ER, implying that the retention system is still operating in the mutant. To determine the subcellular localization of Rer1p, an epitope derived from the influenza hemagglutinin was added to the C-terminus of Rer1p and the cells expressing this tagged but functional protein were observed by immunofluorescence microscopy. The anti-HA monoclonal antibody stains the cells in a punctate pattern that is typical for Golgi proteins and clearly distinct from the ER staining. This punctate staining was in fact exaggerated in the sec7 mutant that accumulates the Golgi membranes at the restrictive temperature. Furthermore, double staining of Rer1p and Ypt1p, a GTPase that is known to reside in the Golgi apparatus, showed good colocalization. Subcellular fractionation experiments indicated that the fractionation pattern of Rer1p was similar to that of an early Golgi protein, Och1p. From these results, we suggest that Rer1p functions in the Golgi membrane to return Sec12p that has escaped from the static retention system of the ER.  相似文献   

11.
Shadoo (Sho) is a neuronally expressed glycoprotein of unknown function. Although there is no overall sequence homology to the cellular prion protein (PrP(C)), both proteins contain a highly conserved internal hydrophobic domain (HD) and are tethered to the outer leaflet of the plasma membrane via a C-terminal glycosylphosphatidylinositol anchor. A previous study revealed that Sho can reduce toxicity of a PrP mutant devoid of the HD (PrPΔHD). We have now studied the stress-protective activity of Sho in detail and identified domains involved in this activity. Like PrP(C), Sho protects cells against physiological stressors such as the excitotoxin glutamate. Moreover, both PrP(C) and Sho required the N-terminal domain for this activity; the stress-protective capacity of PrPΔN as well as ShoΔN was significantly impaired. In both proteins, the HD promoted homodimer formation; however, deletion of the HD had different effects. Although ShoΔHD lost its stress-protective activity, PrPΔHD acquired a neurotoxic potential. Finally, we could show that the N-terminal domain of PrP(C) could be functionally replaced by that of Sho, suggesting a similar function of the N termini of Sho and PrP(C). Our study reveals a conserved physiological activity between PrP(C) and Sho to protect cells from stress-induced toxicity and suggests that Sho and PrP(C) might act on similar signaling pathways.  相似文献   

12.
Huntingtin regulates post-Golgi trafficking of secreted proteins. Here, we studied the mechanism by which mutant huntingtin impairs this process. Colocalization studies and Western blot analysis of isolated Golgi membranes showed a reduction of huntingtin in the Golgi apparatus of cells expressing mutant huntingtin. These findings correlated with a decrease in the levels of optineurin and Rab8 in the Golgi apparatus that can be reverted by overexpression of full-length wild-type huntingtin. In addition, immunoprecipitation studies showed reduced interaction between mutant huntingtin and optineurin/Rab8. Cells expressing mutant huntingtin produced both an accumulation of clathrin adaptor complex 1 at the Golgi and an increase of clathrin-coated vesicles in the vicinity of Golgi cisternae as revealed by electron microscopy. Furthermore, inverse fluorescence recovery after photobleaching analysis for lysosomal-associated membrane protein-1 and mannose-6-phosphate receptor showed that the optineurin/Rab8-dependent post-Golgi trafficking to lysosomes was impaired in cells expressing mutant huntingtin or reducing huntingtin levels by small interfering RNA. Accordingly, these cells showed a lower content of cathepsin D in lysosomes, which led to an overall reduction of lysosomal activity. Together, our results indicate that mutant huntingtin perturbs post-Golgi trafficking to lysosomal compartments by delocalizing the optineurin/Rab8 complex, which, in turn, affects the lysosomal function.  相似文献   

13.
The transport of apolipoprotein B (apoB) between the endoplasmic reticulum (ER) and Golgi was studied in puromycin-synchronized HepG2 cells, using an antibody that could distinguish between apoB in ER and Golgi compartments. In cells with normal ER-to-Golgi transport, both albumin and apoB colocalized throughout the ER and appeared as intense, compact signals in Golgi. When ER-to-Golgi transport was blocked with brefeldin A, apoB and albumin remained colocalized in the ER network and three-dimensional constructed images showed more intense signals for both proteins in a central, perinuclear region of the ER. When protein synthesis was stopped in cells with brefeldin A-inhibited ER-to-Golgi transport, apoB degradation was visualized as a homogeneous decrease in fluorescence signal intensity throughout the ER that could be slowed with clasto-lactacystin beta-lactone, a proteasome inhibitor. Incubation of cells with CP-10447, an inhibitor of microsomal triglyceride transfer protein, inhibited apoB, but not albumin, transport from ER to Golgi. Nanogold immunoelectron microscopy of digitonin-permeabilized cells showed proteasomes in close proximity to the cytosolic side of the ER membrane. Thus, newly synthesized apoB is localized throughout the entire ER and degraded homogeneously, most likely by neighboring proteasomes located on the cytosolic side of the ER membrane. Although albumin is colocalized with apoB in the ER, as expected, it was not targeted for ER-associated proteasomal degradation.  相似文献   

14.
The fungal drug brefeldin A (BFA) has recently been found to induce a redistribution of medial- and cis-Golgi components to the endoplasmic reticulum (ER), raising the possibility of the existence of a retrograde pathway from the Golgi complex to the ER. Here, we demonstrate a BFA-induced reversible rearrangement of the trans-Golgi membrane protein galactosyltransferase (Gal-T) to the ER in HeLa cells. With immunofluorescence microscopy we have shown that BFA first caused a rapid change of Gal-T immunolabelling from a normal Golgi complex pattern to long and slender structures emanating from the cell centre and co-localizing with tubulin. Then immunofluorescence became ER-like. This effect was not dependent on ongoing protein synthesis and was reversed to normal within 120 min after removal of the drug. Restoration of the Golgi complex after removal of brefeldin A was energy-dependent but not mediated by microtubules nor dependent on protein synthesis. BFA-induced backflow of Gal-T was inhibited by nocodazole, a microtubule-disrupting agent. Immunoelectron microscopy showed that BFA treatment resulted in the fusion of Gal-T-containing vesicles with the ER. Furthermore, sucrose gradient centrifugation showed a significant shift in density of mature Gal-T polypeptides upon BFA treatment: about 40% of the enzyme migrated from its original density (1.13 g/ml) to the density of rough ER (1.19 g/ml). Thus, BFA caused microtubule-dependent vesicular backflow from a trans-Golgi component to the ER followed by fusion of the Golgi-derived vesicles with the ER.  相似文献   

15.
The function of the Golgi apparatus is to modify proteins and lipids synthesized in the ER and sort them to their final destination. The steady-state size and function of the Golgi apparatus is maintained through the recycling of some components back to the ER. Several lines of evidence indicate that the spatial segregation between the ER and the Golgi apparatus as well as trafficking between these two compartments require both microtubules and motors. We have cloned and characterized a new Xenopus kinesin like protein, Xklp3, a subunit of the heterotrimeric Kinesin II. By immunofluorescence it is found in the Golgi region. A more detailed analysis by EM shows that it is associated with a subset of membranes that contain the KDEL receptor and are localized between the ER and Golgi apparatus. An association of Xklp3 with the recycling compartment is further supported by a biochemical analysis and the behavior of Xklp3 in BFA-treated cells. The function of Xklp3 was analyzed by transfecting cells with a dominant-negative form lacking the motor domain. In these cells, the normal delivery of newly synthesized proteins to the Golgi apparatus is blocked. Taken together, these results indicate that Xklp3 is involved in the transport of tubular-vesicular elements between the ER and the Golgi apparatus.  相似文献   

16.
Huntington's disease (HD) is a neurodegenerative disorder with a midlife onset. The disease is caused by expansion of a CAG (glutamine) repeat within the coding region of the HD gene. The molecular mechanism by which the mutated protein causes this disease is still unclear. To study the protein we have generated a set of rabbit polyclonal antibodies raised against different segments of the N-terminal, central and C-terminal parts of the protein. The polyclonal antibodies were affinity purified and characterized in ELISA and Western blotting experiments. All antibodies can react with mouse and human proteins. The specificity of these antibodies is underscored by their recognition of huntingtin with different repeat sizes in extracts prepared from patient-derived lymphoblasts. The antibodies were used in immunofluorescence experiments to study the subcellular localization of huntingtin in mouse neuroblastoma NIE-115 cells. The results indicate that most huntingtin is present in the cytoplasm, whereas a minor fraction is present in the nucleus. On differentiation of the NIE-115 cells in vitro, the subcellular distribution of huntingtin does not change significantly. These results suggest that full-length huntingtin with a normal repeat length can be detected in the nucleus of cycling and non-cycling cultured mammalian cells of neuronal origin. However, in HD autopsy brain the huntingtin-containing neuronal intranuclear inclusions can be detected only with antibodies raised against the N-terminus of huntingtin. Thus several forms of huntingtin display the propensity for nuclear localization, possibly with different functional consequences.  相似文献   

17.
We have utilized small interfering RNA (siRNA)-mediated depletion of the beta-COP subunit of COP-I to explore COP-I function in organellar compartmentalization and protein traffic. Reduction in beta-COP levels causes the colocalization of markers for the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), Golgi, trans-Golgi network (TGN), and recycling endosomes in large, globular compartments. The lack of spatial differentiation of these compartments is not due to a general collapse of all cellular organelles since markers for the early endosomes and lysosomes do not redistribute to the common structures. Anterograde trafficking of the transmembrane cargo vesicular stomatitis virus membrane glycoprotein and of a subset of soluble cargoes is arrested within the common globular compartments. Similarly, recycling traffic of transferrin through the common compartment is perturbed. Furthermore, the trafficking of caveolin-1 (Cav1), a structural protein of caveolae, is arrested within the globular structures. Importantly, Cav1 coprecipitates with the gamma-subunit of COP-I, suggesting that Cav1 is a COP-I cargo. Our findings suggest that COP-I is required for the compartmentalization of the ERGIC, Golgi, TGN, and recycling endosomes and that COP-I plays a novel role in the biosynthetic transport of Cav1.  相似文献   

18.
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.  相似文献   

19.
Allele-specific silencing of mutant Huntington's disease gene   总被引:1,自引:0,他引:1  
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a poly-glutamine expansion in huntingtin, the protein encoded by the HD gene. PolyQ-expanded huntingtin is toxic to neurons, especially the medium spiny neurons of the striatum. At the same time, wild-type huntingtin has important – indeed essential – protective functions. Any effective molecular therapy must preserve the expression of wild-type huntingtin, while silencing the mutant allele. We hypothesized that an appropriate siRNA molecule would display the requisite specificity and efficacy. As RNA interference is incapable of distinguishing among alleles with varying numbers of CAG (glutamine) codons, another strategy is needed. We used HD fibroblasts in which the pathogenic mutation is linked to a polymorphic site: the Δ2642 deletion of one of four tandem GAG triplets. We silenced expression of the harmful Δ2642-marked polyQ-expanded huntingtin without compromising synthesis of its wild-type counterpart. Following this success in HD fibroblasts, we obtained similar results with neuroblastoma cells expressing both wild-type and mutant HD genes. As opposed to the effect of depleting wild-type huntingtin, specifically silencing the mutant species actually lowered caspase-3 activation and protected HD cells under stress conditions. These findings have therapeutic implications not only for HD, but also for other autosomal dominant diseases. This approach has great promise: it may lead to personalized genetic therapy, a holy grail in contemporary medicine.  相似文献   

20.
Several proteins linked to neurodegenerative diseases, such as the beta-amyloid precursor protein, amyloid beta-peptide, beta-secretase, and tau, undergo selective polarized sorting. We investigated polarized sorting of the mammalian prion protein (PrP(C)) and its homologue doppel (Dpl). In contrast to Dpl, which accumulates on the apical surface, PrP(C) is targeted selectively to the basolateral side in Madin-Darby canine kidney cells. An extensive deletion and domain swapping analysis revealed that the internal hydrophobic domain (HD) of PrP (amino acids 113-133) confers basolateral sorting in a dominant manner. PrP mutants lacking the HD are sorted apically, while Dpl chimeras containing the HD of PrP are directed to the basolateral membrane. Furthermore, a pathogenic PrP missense mutation within the HD leads to aberrant apical sorting of PrP as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号