首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Vibrio cholerae can enter a viable but non-culturable (VBNC) state when it encounters unfavourable environments; VBNC cells serve as important reservoirs and still pose threats to public health. The genetic regulation of V. cholerae entering its VBNC state is not well understood. Here, we show a confrontation strategy adapted by V. cholerae O1 in which it utilizes a quorum sensing (QS) system to prevent transition into a VBNC state under low nutrition and temperature conditions. The upregulation of hapR resulted in a prolonged culturable state of V. cholerae in artificial sea water at 4°C, whereas the mutation of hapR led to fast entry into the VBNC state. We also observed that different V. cholerae O1 natural isolates with distinct QS functions present a variety of abilities to maintain culturability during the transition to a VBNC state. The strain groups with higher or constitutive expression of QS genes exhibit a greater tendency to maintain the culturable state during VBNC induction than those lacking QS functional groups. In summary, HapR-mediated QS regulation is associated with the transition to the VBNC state in V. cholerae. HapR expression causes V. cholerae to resist VBNC induction and become dominant over competitors in changing environments.  相似文献   

4.
5.
When exposed to stress-provoking environmental conditions such as those of ground waters, many medically important bacteria have been shown to be capable of activating a survival strategy known as the viable but non-culturable (VBNC) state. In this state bacteria are no longer culturable on conventional growth media, but the cells maintain their viability and pathogenicity genes/factors and can start dividing again, in a part of the cell population, upon restoration of favourable environmental conditions. Little is known about the genetic mechanisms underlying the VBNC state. In this study we show evidence of involvement of the rpoS gene in persistence of Escherichia coli in the VBNC state. The kinetics of entry into the non-culturable state and duration of cell viability were measured in two E. coli mutants carrying an inactivated rpoS gene and compared with those of the parents. For these experiments, laboratory microcosms consisting of an artificial oligotrophic medium incubated at 4 degrees C were used. The E. coli parental strains reached the non-culturable state in 33 days when the plate counts were evaluated on Luria-Bertani agar containing sodium pyruvate, whereas cells of the rpoS mutants lost their culturability in only 21 days. Upon reaching unculturability the parents yielded respiring cells and cells with intact membranes for at least the next three weeks and resuscitation was allowed during this time. In contrast, the RpoS- mutant cells demonstrated intact membranes for only two weeks and a very restricted (<7 days) resuscitation capability. Guanosine 3',5'-bispyrophosphate (ppGpp) acts as a positive regulator during the production and functioning of RpoS. A mutant deficient in ppGpp production behaved like the rpoS mutants, while overproducers of ppGpp displayed a vitality at least comparable to that of RpoS+ strains. These results suggest that the E. coli parental strains enter the VBNC state which lasts for, at least, three weeks, after which apparently all the cells die. The rpoS mutants do not activate this survival strategy and early die. This implies involvement of the rpoS gene in E. coli persistence in the VBNC state.  相似文献   

6.
7.
微生物VBNC状态形成及复苏机制   总被引:3,自引:1,他引:2  
张硕  丁林贤  苏晓梅 《微生物学报》2018,58(8):1331-1339
99%以上的微生物因处于活的但非可培养(viable but non-culturable,VBNC)状态而无法分离培养。复苏促进因子(resuscitation-promoting factors,Rpfs)是培养获取VBNC菌的最重要突破。结合课题组近十余年从环境功能视角利用Rpf复苏培养VBNC菌的研究,本文在阐述微生物VBNC状态的形成及复苏进展的基础上,从VBNC菌形成及复苏过程出发,探究"探索因子"与群体感应的内在关系。并总结了课题组利用Rpf所复苏培养的具有潜在环境功能的VBNC菌种。本论文将为揭示微生物VBNC状态的形成及复苏机制提供新的思路,并为认识和重新评价Rpf法复苏培养VBNC菌在污染环境微生物修复中的作用提供理论依据。  相似文献   

8.
AIMS: The viable but non-culturable (VBNC) state is a survival strategy adopted by bacteria when exposed to environmental stress. When in this state bacteria are no longer culturable on conventional growth media, but cells display metabolic activity and maintain pathogenicity factors/genes and, in some cases, resuscitation from the VBNC state has been shown. This state has been described for both human pathogens and faecal pollution indicators. In this study, we present evidence for entry of different enterococcal species into the VBNC state in an oligotrophic microcosm. METHODS AND RESULTS: The duration of the viability of the cells in the VBNC state was measured either by detecting the presence of pbp5 mRNA or by quantifying their resuscitation capability. Enterococci showed different behaviours. Enterococcus faecalis and Enterococcus hirae entered into the VBNC state within 2 weeks and remained in that state for 3 months. In the experiments described the resuscitation rate was 1:10 000 cells as soon as the cells entered the VBNC state and decreased gradually to undetectable levels over the following 3 months. Enterococcus faecium, however, remained culturable up to 4 weeks. After this time period, when the population was totally unculturable, the cells were far less resuscitable than other enterococci and only over a narrow time interval (2 weeks). CONCLUSIONS: These results suggest that Ent. faecalis and Ent. hirae enter the VBNC state but that Ent. faecium, in an oligotrophic laboratory environment, tends to die instead of entering the VBNC state. SIGNIFICANCE AND IMPACT OF THE STUDY: These experiments may mimic what happens when enterococci are released by humans and animals in natural environments.  相似文献   

9.
Under suboptimal environmental conditions such as low temperatures, many bacteria have an extended lag phase, altered cell structures, and composition such as a less fluid (more rigid) and leaky cytoplasmic membrane. As a result, cells may die, enter into a starvation mode of metabolism or a physiologically viable but non-culturable (VBNC) state. In the latter state, the amount of gene expression per cell is virtually undetectable. In this article, gene expression under (suboptimal) low temperature conditions in non-psychrophilic environmental bacteria is examined. The pros and cons of some of the molecular methodologies for gene expression analysis are also discussed.  相似文献   

10.
11.
12.
Campylobacter jejuni is a major gastrointestinal pathogen that colonizes host mucosa via interactions with extracellular matrix proteins such as fibronectin. The aim of this work was to study in vitro the adhesive properties of C. jejuni ATCC 33291 and C. jejuni 241 strains, in both culturable and viable but non-culturable (VBNC) forms. To this end, the expression of the outer-membrane protein CadF, which mediates C. jejuni binding to fibronectin, was evaluated. VBNC bacteria were obtained after 46–48 days of incubation in freshwater at 4 °C. In both cellular forms, the expression of the cadF gene, assessed at different time points by RT-PCR, was at high levels until the third week of VBNC induction, while the intensity of the signal declined during the last stage of incubation. CadF protein expression by the two C. jejuni strains was analysed using 2-dimensional electrophoresis and mass spectrometry; the results indicated that the protein, although at low levels, is also present in the VBNC state. Adhesion assays with culturable and VBNC cells, evaluated on Caco-2 monolayers, showed that non-culturable bacteria retain their ability to adhere to intestinal cells, though at a reduced rate. Our results demonstrate that the C. jejuni VBNC population maintains an ability to adhere and this may thus have an important role in the pathogenicity of this microorganism.  相似文献   

13.
In this study we investigated the viable but non-culturable (VBNC) state of Aeromonas hydrophila and its virulence in goldfish. Aeromonas hydrophila cultured in a 0.35% NaCl solution at pH 7.5 and at 25 degrees C for 50 days showed the VBNC state. In the VBNC state we were unable to detect viable bacteria by the plate count method but we did find 10(4) cells/ml by the direct viable count microscopical method after staining with fluorescein diacetate and ethidium bromide. The virulence comparison in goldfish showed that bacteria cultured at 25 degrees C for 1 day in a 0.35% NaCl solution were more virulent than bacteria cultured for 28 days. VBNC bacteria showed lower virulence in goldfish compared to 28-day-cultured bacteria by intraperitoneal injection. The results from the study suggest that A. hydrophila can remain in the aquatic environment for prolonged periods in the VBNC state but those cells are not pathogenic to goldfish.  相似文献   

14.
细胞膜是控制细菌细胞进行物质交换的屏障。在逆境条件下,细菌通过改变细胞膜脂肪酸的组分和含量,以调整适当的膜流动性和适应性,保护细胞膜免受不利和多变逆境条件的影响。有些细菌在逆境胁迫的条件下会进入活的但不可培养的(Viable but non-culturable, VBNC)状态。总结了细菌几种逆境胁迫及其诱导因子,并论述了细菌和部分具有VBNC态细菌在逆境胁迫下膜脂肪酸的种类及含量的变化、以及脂肪酸检测方法的研究进展,为进一步解析细菌逆境胁迫机制提供参考。  相似文献   

15.
【目的】克隆藤黄微球菌Micrococcus luteus IAM 14879(=NCIMB 13267)的复苏促进因子Rpf(resuscitation promoting factor)的基因,在大肠杆菌中表达获取基因重组蛋白,考察对近缘高GC革兰氏阳性菌红球菌Rhodococcus sp.DS471活的非可培养VBNC(viable but non-culturable)菌体的复苏促进生长能力。【方法】抽提制备藤黄微球菌的DNA,确定rpf基因引物进行PCR扩增,利用pET15b质粒载体并转化大肠杆菌DE3表达,以SDS-PAGE检验获取纯化重组蛋白;在培养基中添加Rpf,以MPN(most probable number)法计数、评价对VBNC状态菌体的复苏促进生长效果。【结果】基因测序证实获得藤黄微球菌的rpf基因并在大肠杆菌中表达;SDS-PAGE分析表明获得rpf基因的重组蛋白;该蛋白对处于VBNC状态的红球菌具有近100倍的复苏促进生长能力。【结论】成功克隆了藤黄微球菌的rpf基因,在大肠杆菌中获得了表达,表明了Rpf蛋白对处于VBNC状态的红球菌具有复苏促进生长效果。  相似文献   

16.
细菌有活力但不可培养状态及其机制研究进展   总被引:1,自引:1,他引:0  
有活力但不可培养(viable but non-culturable,VBNC)状态是细菌遭遇逆境时进入的一种特殊状态,该状态下的菌体在条件适宜时可复苏并恢复其致病性,被认为是细菌躲避不良环境的一种生存策略。VBNC状态菌体对人类医学和工农业生产具有巨大的潜在威胁,开展关于VBNC状态的检测及诱导、复苏及其机制研究可为减少或避免该状态细菌的危害提供理论基础。本文简要综述了细菌VBNC状态在诱导、复苏及致病性等方面的研究进展,并结合本实验室及国内外相关团队近年来在植物病原细菌VBNC状态研究中的结果,详细总结了VBNC状态细菌的形成和复苏机制,对植物病原细菌在环境胁迫下的存活机制、病害田间初侵染来源分析及VBNC状态菌体在病害循环中的作用等相关研究具有重要参考意义。  相似文献   

17.
活的但非可培养(VBNC) 状态菌的研究进展   总被引:2,自引:0,他引:2  
VBNC(viable but non-culturable)是指处于"活的但非可培养"状态的微生物,此微生物体的细胞仍有代谢活性,但用常规方法无法分离培养.本文阐述了VBNC状态菌的形成机理、转变与种类、复苏、研究意义及其应用展望.并报道了我们在十余年间针对生态环境中处于VBNC状态菌的复苏、可培养化、系统进化关系及潜在功能等方面的一些研究成果,拟为微生物资源的开发与应用提供新的科学依据.  相似文献   

18.
Various non-spore forming bacteria, including Escherichia coli, enter a dormant-like state, the viable but non-culturable (VBNC) state, characterized by the presence of viable cells but the inability to grow on routine laboratory media. Upon resuscitation, these VBNC cells recover both culturability and pathogenicity. In 2011, a large outbreak involving more than 3000 cases of bloody diarrhoea and haemolytic uremic syndrome was caused by an E.?coli O104:H4 strain expressing genes characteristic of both enterohaemorrhagic (EHEC) and enteroaggregative E.?coli (EAEC). The ability of the outbreak strain to enter the VBNC state may have complicated its detection in the suspected sources. In this paper, we investigated the ability of the outbreak strain to enter and subsequently recover from the VBNC state. We found that in a nutrient-poor micro-environment, various stresses such as toxic concentrations of copper ions or certain types of tap water are able to render the bacteria unculturable within a few days. Without copper ion stress, the majority of cells remained culturable for at least 40 days. Incubation with the stressors at 23°C compared with 4°C hastened this observed loss of culturability. The integrity of a considerable fraction of copper ion- and tap water 1-stressed bacteria was demonstrated by live/dead staining and microscopy. Relieving stress by copper-ion chelation facilitated resuscitation of these bacteria while preserving their fitness, major virulence gene markers (stx2, aggR, aggA genes) and specific phenotypes (ESBL resistance, autoaggregation typical for EAEC strains).  相似文献   

19.
Vibrio cholerae is capable of transforming into a viable but nonculturable (VBNC) state, and, in doing so, undergoes alteration in cell morphology. In the study reported here, Vibrio cholerae O1 and O139 cells were maintained in laboratory microcosms prepared with 1% Instant Ocean and incubated at 4 degrees C, i.e., conditions which induce the VBNC state. Cells were fixed at different stages during entry into the VBNC state and, when no growth was detectable on solid or in liquid media, the ultrastructure of these cells was examined, using both transmission and scanning electron microscopy. As shown in earlier studies, the cells became smaller in size and changed from rod to ovoid or coccoid morphology, with the central region of the cells becoming compressed and surrounded by denser cytoplasm. Because the coccoid morphology, indicative of the VBNC state is common for Vibrio cholerae in the natural environment, as well as in starved cells (Baker et al., 1983; Hood et al., 1986) viability of the coccoid, viable but nonculturable cell was investigated. The percentage of coccoid (VBNC) cells showing metabolic activity and retention of membrane integrity was monitored using direct fluorescence staining (LIVE/DEAD BacLight Bacterial Viability kit), with 75 to 90% of the viable but nonculturable coccoid cells found to be metabolically active by this test. Furthermore, the proportion of actively respiring cells, using the redox dye, 5-cyano-2, 3-ditolyl tetrazolium chloride (CTC), relative to total cells, the latter determined by DAPI staining, ranged from 10 to 50%. VBNC coccoid cells retained the antigenic determinants of Vibrio cholerae O1 and O139, respectively, evidenced by positive reaction with monoclonal fluorescent antibody. Viability was further established by susceptibility of the VBNC cells to chlorine, copper sulfate, zinc sulfate, and formaldehyde. Since retention of cell membrane integrity is a determining characteristic of viable cells, DNA was extracted from VBNC cells in microcosms maintained for two months and for one year. Conservation of cholera toxin and toxin-associated genes, ctxA, toxR, tcpA, and zot in chromosomal DNA of VBNC cells was demonstrated using PCR and employing specific primers. It is concluded that not only do VBNC V cholerae O1 and O139 retain viability up to one year, but genes associated with pathogenicity are retained, along with chromosomal integrity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号