首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper shows that the “second Emerson effect”1 exists not only in photosynthesis, but also in the quinone reduction (Hill reaction), in Chlorella pyrenoidosa and Anacystis nidulans. The peaks at 650 mμ, 600 mμ, 560 mμ, 520 mμ, and 480 mμ, observed in the action spectrum of this effect in the Hill reaction in Chorella, are attributable to chlorophyll b; the occurrence of an additional peak at 670 mμ, 620 mμ, and of two (or three) peaks in the blueviolet region suggests that (at least) one form of chlorophyll a contributes to it. In analogy to suggestions made previously in the interpretation of the Emerson effect in photosynthesis, these results are taken as indicating that excitation by light preferentially absorbed by one (or two) forms of chlorophyll a (Chl a 690 + 700), needs support by simultaneous absorption of light in another form of chlorophyll a (Chl a 670)—directly or via energy transfer from chlorophyll b—in order to produce the Hill reaction with its full quantum yield. In Anacystis, the participation of phycocyanin in the Emerson effect in the Hill reaction is revealed by the occurrence, in the action spectrum of this effect, of peaks at about 560 mμ, 610 mμ, and 640 mμ; a peak at 670 mμ, due to Chl a 670, also is present.  相似文献   

3.
Developing chloroplasts isolated from cucumber (Cucumis sativus L. var Beit Alpha) cotyledons are capable of incorporating [14C]5-aminolevulinic acid into chlorophyll (Chl) b and Chl a when incubated under photosynthetic illumination. Thin layer chromatography and high pressure liquid chromatography were employed to analyze the pigments. The specific radioactivity in Chl a was over three times higher than that found in Chl b. Both Chl a and b synthesizing activities in organello decayed rapidly at approximately the same rate. We conclude that concomitant synthesis of Chl a/b-binding apoprotein is not required for Chl b synthesis.  相似文献   

4.
We use femtosecond transient absorption spectroscopy to study chlorophyll (Chl)-Chl energy transfer in the peridinin-chlorophyll protein (PCP) reconstituted with mixtures of either chlorophyll b (Chlb) and Chld or Chla and bacteriochlorophyll a (BChla). Analysis of absorption and transient absorption spectra demonstrated that reconstitution with chlorophyll mixtures produces a significant fraction of PCP complexes that contains a different Chl in each domain of the PCP monomer. The data also suggest that binding affinity of Chla is less than that of the other three Chl species. By exciting the Chl species lying at higher energy, we obtained energy transfer times of 40 ± 5 ps (Chlb-Chld) and 59 ± 3 ps (Chla-BChla). The experimental values match those obtained from the Förster equation, 36 and 50 ps, respectively, showing that energy transfer proceeds via the Förster mechanism. Excitation of peridinin in the PCP complex reconstituted with Chla/BChla mixture provided time constants of 2.6 and 0.4 ps for the peridinin-Chla and peridinin-BChla energy transfer, matching those obtained from studies of PCP complexes reconstituted with single chlorophyll species.  相似文献   

5.
Soybean plants (Glycine max [L.] Merr. cv Clark) carrying nuclear and cytoplasmic “stay-green” mutations, which affect senescence, were examined. Normally, the levels of chlorophyll (Chl) a and b decline during seedfill and the Chl a/b ratio decreases during late pod development in cv Clark. Plants homozygous for both the d1 and d2 recessive alleles, at two different nuclear loci, respectively, retained most (64%) of their Chl a and b and exhibited no change in their Chl a/b ratio. Combination of G (a dominant nuclear allele in a third locus causing only the seed coat to stay green during senescence) with d1d2 further inhibited the loss of Chl in the leaf. Whereas the thylakoid proteins seem to be degraded in normal Clark leaves during late pod development, they were not substantially diminished in d1d2 and Gd1d2 leaves. In plants carrying a cytoplasmic mutation, cytG, Chl declined in parallel with normal cv Clark; however, the cytG leaves had a much higher level of Chl b, and somewhat more Chl a, remaining at abscission, enough to color the leaves green. In cytG, most thylakoid proteins were degraded, but the Chl a/b-binding polypeptides of the light-harvesting complex in photosystem II (LHCII), and their associated Chl a and b molecules, were not. Thus, the combination of d1 and d2 causes broad preservation of the thylakoid proteins, whereas cytG appears to selectively preserve LHCII. The cytG mutation may be useful in elucidating the sequence of events involved in the degradation of LHCII proteins and their associated pigments during senescence.  相似文献   

6.
Using a mode-locked laser (λ, 632.8 nm), fluorescence decay of chlorophyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase-shift method under conditions when photosynthesis was not operative (3-(3,4-dichlorophenyl)-1,1-dimethylurea [DCMU] poisoning, or cooling to 77°K). In the presence of 10-5 M DCMU, the lifetime of Chl a fluorescence (τ) at room temperature is about 1.7 nsec in Chlorella, 1.0 nsec in Porphyridium, and 0.7 nsec in Anacystis. At 77°K, τ is 1.4 nsec (for fluorescence at about 685 nm, F-685) and 2.3 nsec (for F-730) in Chlorella, 0.9 nsec (F-685) and 1.2 nsec (F-730) in Porphyridium, and 0.8 nsec (F-685 and F-730) in Anacystis. From the above measurement, and the assumption that τ0 (the intrinsic fluorescence lifetime) for Chl a in all three algae is 15.2 nsec, we have calculated the rate constants of radiationless transition (that includes energy transfer to weakly fluorescent system I) processes competing with fluorescence at room temperature to be about 5 × 108 sec-1 in Chlorella, 9 × 108 sec-1 in Porphyridium, and 13 × 108 sec-1 in Anacystis. At 77°K, this rate constant for Chl a that fluoresces at 685 nm remains, in the first approximation, the same as at room temperature. From the τ data, the rate constant for the trapping of excitation energy is calculated to be about 1.2 × 109 sec-1 for Chlorella, 2 × 109 sec-1 for Porphyridium, and 2 × 109 sec-1 for Anacystis. The efficiency of trapping is calculated to be about 66% (Chlorella), 68% (Porphyridium), and 60% (Anacystis). (It is recognized that variations in the above values are to be expected if algae grown under different conditions are used for experimentation.) The maximum quantum yield of Chl a fluorescence for system II (λ, 632.8 nm), calculated from τ measurements, is about 10% in Chlorella, 6-7% in Porhyridium, and 5% in Anacystis under conditions when photosynthesis is not operative; the values at 77°K appear to be very close to those with DCMU added at room temperature. ø for F-730 at 77°K, however, is somewhat higher than for F-685. The predicted quantum yields of fluorescence for Chl a in intact cells (both systems I and II) at low intensities of 632.8 nm light are about 2-3, 1-2, and 1% for Chlorella, Porphyridium, and Anacystis, respectively.  相似文献   

7.
We combine ensemble and single-molecule spectroscopy to gain insight into the energy transfer between chlorophylls (Chls) in peridinin-chlorophyll-protein (PCP) complexes reconstituted with Chl a, Chl b, as well as both Chl a and Chl b. The main focus is the heterochlorophyllous system (Chl a/b-N-PCP), and reference information essential to interpret experimental observations is obtained from homochlorophyllous complexes. Energy transfer between Chls in Chl a/b-N-PCP takes place from Chl b to Chl a and also from Chl a to Chl b with comparable Förster energy transfer rates of 0.0324 and 0.0215 ps−1, respectively. Monte Carlo simulations yield the ratio of 39:61 for the excitation distribution between Chl a and Chl b, which is larger than the equilibrium distribution of 34:66. An average Chl a/Chl b fluorescence intensity ratio of 66:34 is measured, however, for single Chl a/b-N-PCP complexes excited into the peridinin (Per) absorption. This difference is attributed to almost three times more efficient energy transfer from Per to Chl a than to Chl b. The results indicate also that due to bilateral energy transfer, the Chl system equilibrates only partially during the excited state lifetimes.  相似文献   

8.
In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx–Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300 fs. Chl c transferred excitation energy to Chl a with time constants of 500–600 fs (intra-complex transfer), 600–700 fs (intra-complex transfer), and 4–6 ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

9.
Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non‐photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light‐harvesting pigments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Time-resolved measurements of the singlet oxygen infrared (1269 nm) luminescence were used to follow the kinetics and efficiency of excitation energy transfer (EET) between chlorophyll (Chl) derivatives and oxygen in acetone. The studied pigments were Mg-Chl a and b and their heavy metal (Cu2+ and Zn2+)-substituted analogues, as well as pheophytin (Pheo) a and b. The efficiency of EET from chlorophyll to oxygen was highly dependent on the central ion in the pigment. Cu-Chl a and Cu-Chl b had the lowest efficiencies of singlet oxygen production, while Pheo a had a higher one, and Zn-Chl a had a similar one compared to Mg-Chl a. Also the side chain (position C-7, i.e. Chl a vs. Chl b) influenced the efficiency of singlet oxygen formation. In the case of square-planar complexes like Cu-Chl and Pheo, EET was more efficient in the Chl a derivatives than in those of Chl b; the opposite effect was observed in the case of the five- or six-coordinated Mg-Chl and Zn-Chl. As for the lifetime of the Chl triplet state, the most striking difference to Mg-Chl again was found in the case of Cu-Chls, which had much shorter lifetimes. Furthermore, the central ion in Chl affected the physical quenching of singlet oxygen: its efficiency was decreasing from Mg-Chl through Zn-Chl over Cu-Chl to Pheo. The results are discussed in the context of the oxidative stress accompanying heavy metal-induced stress in plants.  相似文献   

11.
Diurnal fluctuations were observed in the content and some structural and functional properties of the light-harvesting chlorophyll (Chl) a/b pigment-protein complex of photosystem II (LHCII) in young developing wheat (Triticum aestivum) leaves grown under 16 hours light/8 hours dark illumination regime. The fluctuations could be correlated with the diurnal oscillation in the level of mRNA for LHCII. The most pronounced changes occurred in the basal segments of the leaves. They were weaker or hardly discernible in the middle and tip segments. As judged from the diurnal variations of the Chl-a/Chl-b molar ratio, the LHCII content of the thylakoid membranes peaked around 2 pm. This can be accounted for by the cumulative effect of the elevated level of mRNA in the morning and early afternoon. In the basal segment, the extent of the fluctuation in the LHCII content was approximately 25%, as determined from gel electrophoresis (“green gels”). The amplitude of the principal bands of the circular dichroism (CD) spectra of isolated chloroplasts paralleled the changes in the LHCII content. Our circular dichroism data suggest that the newly synthesized LHCII complexes are incorporated into the existing helically organized macrodomains of the pigment-protein complexes or themselves form such macrodomains in the thylakoid membranes. Chl-a fluorescence induction kinetics also showed diurnal variations especially in the basal segments of the leaves. This most likely indicates fluctuations in the ability of membranes to undergo “state transitions.” These observations suggest a physiological role of diurnal rhythm of mRNA for LHCII in young developing leaves.  相似文献   

12.
The in-chlorophyll centre waveband (ICCW) (640–680 nm) is the specific chlorophyll (Chl) absorption band, but the reflectance in this band has not been used as an optimal index for non-destructive determination of plant Chl content in recent decades. This study develops a new spectral index based solely on the ICCW for robust retrieval of leaf Chl content for the first time. A glasshouse experiment for solution-culture of one chlorophyll-deficient rice mutant and six wild types of rice genotypes was conducted, and the leaf reflectance (400–900 nm) was measured with a high spectral resolution (1 nm) spectrophotometer and the contents of chlorophyll a (Chla), chlorophyll b (Chlb) and chlorophyll a+b (Chlt) of the rice leaves were determined. It was found that the reflectance curves from 640 nm to 674 nm and from 675 nm to 680 nm of the low-chlorophyll mutant leaf were drastically steeper than that of the wild types in the ICCW. The new index based on the reflectance variation within ICCW, the difference of the first derivative sum within the ICCW (DFDS_ICCW), was highly sensitive (r = −0.77, n = 93, P<0.01) to Chlt while the mean reflectance (R_ICCW) in the ICCW became insensitive (r = −0.12, n = 93, P>0.05) to Chlt when the leaf Chlt was higher than 200 mg/m2. The best equations of R-ICCW and DFDS_ICCW yielded an RMSE of 78.7, 32.9 and 107.3 mg/m2, and an RMSE of 37.4, 16.0 and 45.3 mg/m−2, respectively, for predicting Chla, Chlb and Chlt. The new index could rank in the top 10 for prediction of Chla and Chlt as compared with the 55 existing indices. Additionally, most of the 55 existing Chl-related VIs performed robustly or strongly in simultaneous prediction of leaf Chla, Chlb and Chlt.  相似文献   

13.
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl?d, Chl?f or bacteriochlorophyll (BChl) b to replace native BChl?a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg?10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6?ps, energy transfer from Chl?a to B850 BChl?a remained highly efficient. We measured faster energy-transfer time constants for Chl?d (3.5?ps) and Chl?f (2.7?ps), which have red-shifted absorption maxima compared to Chl?a. BChl?b, red-shifted from the native BChl?a, gave extremely rapid (≤0.1?ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.  相似文献   

14.
The initial kinetics of accumulation of chlorophylls (Chl) were analyzed during optimal greening of Chlamydomonas reinhardtii y-1 at 38°C. Acetate was required for maximal synthesis of Chl, which occurred at a linear rate when degreened cells were exposed to light. During the first hour Chl a and b accumulated predominantly as geranylgeraniol esters, with lesser amounts of the species with more reduced alcohol side chains. When Chl synthesis was blocked either by treatment with gabaculine or by transfer to the dark, the distribution shifted to the more reduced forms. Similar kinetic patterns indicated that a common pool of chlorophyllides a and b provided substrate for the enzymatic system that performs esterification and reduction of the sldechain for each group of Chl. Chl b was essentially quantitatively integrated into light-harvesting complexes as indicated by energy transfer to Chl a. In the presence of cycloheximide, an inhibitor of cytoplasmic protein synthesis, Chl b did not accumulate and Chl a production was reduced about one-half. The results demonstrate that Chl a/b-protein complexes assemble rapidly during greening and that reduction of the alcohol side chain of the Chl is not required for assembly of these complexes.  相似文献   

15.
A systematic study was made of the spectrum for exciting long-wave-length fluorescence (at 77°K) during the first 100 hr of greening in Euglena gracilis. A band at 705-710 nm is observable after cells have been greening in light for 30 hr. The ratio of the 705-nm to the 675-nm peak increases during greening, reaching a maximum value at 85 hr, then declining. With concentrated solutions of chlorophyll a, fluorescence excitation spectra are similar to those observed in vivo. The ratio of aggregate to monomer bands increases with concentration of chlorophyll, reaching a maximum value in ethanol and in pyridine at about 3 × 10-2 M and 6 × 10-2 M respectively, then declining. Several model systems were analyzed. It is shown that the band observed in solution with maximum at 705-710 nm is not an artifact of the fluorescence apparatus; it does not arise from undissolved chlorophyll; it does not arise from a fluorescent or nonfluorescent impurity; it does not arise solely from light absorption by a dimer or larger aggregate of chlorophyll. Agreement is obtained between the experimental observations and the results of a mathematical model by including terms for the efficiency of energy transfer from monomeric to dimeric chlorophyll, as well as for the formation of dimers by an equilibrium reaction.  相似文献   

16.
In this article we report the characterization of the energy transfer process in the reconstituted isoforms of the plant light-harvesting complex II. Homotrimers of recombinant Lhcb1 and Lhcb2 and monomers of Lhcb3 were compared to native trimeric complexes. We used low-intensity femtosecond transient absorption (TA) and time-resolved fluorescence measurements at 77 K and at room temperature, respectively, to excite the complexes selectively in the chlorophyll b absorption band at 650 nm with 80 fs pulses and on the high-energy side of the chlorophyll a absorption band at 662 nm with 180 fs pulses. The subsequent kinetics was probed at 30–35 different wavelengths in the region from 635 to 700 nm. The rate constants for energy transfer were very similar, indicating that structurally the three isoforms are highly homologous and that probably none of them play a more significant role in light-harvesting and energy transfer. No signature has been found in the transient absorption measurements at 77 K for Lhcb3 which might suggest that this protein acts as a relative energy sink of the excitations in heterotrimers of Lhcb1/Lhcb2/Lhcb3. Minor differences in the amplitudes of some of the rate constants and in the absorption and fluorescence properties of some pigments were observed, which are ascribed to slight variations in the environment surrounding some of the chromophores depending on the isoform. The decay of the fluorescence was also similar for the three isoforms and multi-exponential, characterized by two major components in the ns regime and a minor one in the ps regime. In agreement with previous transient absorption measurements on native LHC II complexes, Chl b → Chl a energy transfer exhibited very fast channels but at the same time a slow component (ps). The Chls absorbing at around 660 nm exhibited both fast energy transfer which we ascribe to transfer from ‘red’ Chl b towards ‘red’ Chl a and slow transfer from ‘blue’ Chl a towards ‘red’ Chl a. The results are discussed in the context of the new available atomic models for LHC II.  相似文献   

17.
Six chlorophyll–protein complexes are isolated from thylakoid membranes of Bryopsis corticulans by dodecyl-β-d-maltoside polyacrylamide gel electrophoresis. Unlike that of higher plants, the 77 K fluorescence emission spectrum of the CP1 band, the PSI core complexes of B. corticulans, presents two peaks, one at 675 nm and the other at 715–717 nm. The emission peak at 715–717 nm is slightly higher than that at 675 nm in the CP1 band when excited at 438 or 540 nm. However, the peak at 715 nm is obviously lower than that at 675 nm when excited at 480 nm. The excitation spectra of CP1 demonstrate that the peak at 675 nm is mainly attributed to energy from Chl b while it is the energy from Chl a that plays an important role in exciting the peak at 715–717 nm. Siphonaxanthin is found to contribute to both the 675 nm and 715–717 nm peaks. We propose from the above results that chlorophyll a and siphonaxanthin are mainly responsible for the transfer of energy to the far-red region of PSI while it is Chl b that contributes most of the transfer of energy to the red region of PSI. The analysis of chlorophyll composition and spectral characteristics of LHCP1 and LHCP3 also indicate that higher content of Chl b and siphonaxanthin, mainly presented in LHCP1, the trimeric form of LHCII, are evolved by B. corticulans to absorb an appropriate amount of light energy so as to adapt to their natural habitats.  相似文献   

18.
The coding regions for the N-domain, and full length peridinin–chlorophyll a apoprotein (full length PCP), were expressed in Escherichia coli. The apoproteins formed inclusion bodies from which the peptides could be released by hot buffer. Both the above constructs were reconstituted by addition of a total pigment extract from native PCP. After purification by ion exchange chromatography, the absorbance, fluorescence excitation and CD spectra resembled those of the native PCP. Energy transfer from peridinin to Chl a was restored and a specific fluorescence activity calculated which was ~86% of that of native PCP. Size exclusion analysis and CD spectra showed that the N-domain PCP dimerized on reconstitution. Chl a could be replaced by Chl b, 3-acetyl Chl a, Chl d and Bchl using the N-domain apo protein. The specific fluorescence activity was the same for constructs with Chl a, 3-acetyl Chl a, and Chl d but significantly reduced for those made with Chl b. Reconstitutions with mixtures of chlorophylls were also made with eg Chl b and Chl d and energy transfer from the higher energy Qy band to the lower was demonstrated.  相似文献   

19.
Seeni S  Gnanam A 《Plant physiology》1982,70(3):815-822
Cell suspension cultures were established from the callus proliferation of leaf explants of 10- to 12-day-old seedlings of the peanut (Arachis hypogaea L. var. TMV-3). The cells could be cultivated in both agitated and still media, the latter promoting more of chlorophyll (Chl) synthesis. High Chl content (210-240 micrograms Chl per gram fresh weight), yield of free and pipetable cells, presence of all the pigments in the same ratio as that of the leaf tissue, and high rates of O2 evolution (140-170 micromoles O2 per milligram Chl per hour) were some of the desirable features of the still-grown cell cultures. However, considerable variations with regard to the above characters were observed between the cell cultures of different varieties of the peanut.

O2 evolution by the cultured cells was dependent on exogenous supply of HCO3. A well-developed photosynthetic apparatus as evidenced from photosystem I and photosystem II activities of the isolated chloroplasts and variable fluorescence measurements with the cell cultures was further documented by electron microscopic evidence of distinct granal stackings in chloroplasts and sodium dodecyl sulfate-polyacrylamide gel separation of thylakoid membranes into P700 Chl a protein complex and light-harvesting Chl a/b complex. Evidence is presented for the relative increase in the Chl associated with P700 Chl a protein complex in contrast to the light-harvesting Chl a/b complex in the cultured cells as compared to intact leaf.

  相似文献   

20.
Remarkable changes were observed in chlorophyll (Chl) (a+b), carotenoids (Car), and protein content of leaves and fluorescence emission, polarisation, excitation energy transfer, lipid peroxidation and DCPIP photoreduction activity in isolated chloroplasts of wheat leaves grown under moderate irradiance (MI, 15 W m−2, control) and subsequently exposed to high irradiance stress (HIS, 250 W m−2), water stress (WS, 5 % aqueous polyethylene glycol-4000 solution) and HIS+WS simultaneously, during mature and senescence phase. In the stress exposed samples the Chl, Car and protein contents and kinetics of Hill activity significantly declined. Decrease in excitation energy transfer and increase in membrane polarisation and accumulation of malondialdehyde (MDA) in chloroplasts were also observed. The effect was more pronounced when the seedlings were treated with HIS+WS simultaneously. These observations suggest additive and a possible synergetic action of HIS and WS causing faster loss of pigments and protein content, intense changes in membrane properties including photochemical function, compared to samples exposed to either of the stresses individually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号