共查询到20条相似文献,搜索用时 0 毫秒
1.
We have isolated cDNA clones encoding the mouse cytokeratin No. 19 (Ck 19) from an intestinal cDNA library using synthetic oligodeoxyribonucleotides as probes. We obtained four independent clones, which correspond to about 1.4-kb of ck19 cDNA. Nucleotide sequence analysis revealed that these cDNAs encode a protein of 44,541 Da composed of 403 amino acids (aa). The deduced aa sequence defines an alpha-helical central domain, and suggests that the protein lacks a C-terminal non-alpha-helical tail segment, characteristic of the human and bovine 40-kDa keratins (Ck19). The overall aa identity between mouse Ck19 and human and bovine Ck19 is very high, 82.7% and 82.4%, respectively. The coil-forming central domain of mouse Ck19 has 45-65% similarity to other type-I Ck polypeptides, while it displays only 20-30% similarity to type-II Ck polypeptides. Northern blot analysis showed that mouse ck19 mRNA is strongly expressed in adult intestine, stomach and uterus. Interestingly, it is expressed in a placental cell line and a retinoic acid-treated mouse teratocarcinoma cell line (F9), but not in a parietal yolk sac endoderm-like cell line (PYS-2). This pattern of expression is very similar to that for the mouse gene encoding extra-embryonic endodermal cytoskeletal protein C (EndoC), suggesting they may be the same. 相似文献
2.
Among the more than 30 different human proteins of the cytokeratin (CK) group of intermediate filament (IF) proteins, the significance of the epidermal polypeptide CK 2 (Moll et al., 1982, Cell 31, 11-24) has been repeatedly questioned in the literature. Here, we show, by in vitro translation and protein gel electrophoresis, that human epidermis from various body sites does indeed contain relatively large amounts of mRNA encoding a distinct polypeptide comigrating with native epidermal CK 2. We also report the isolation of a cDNA clone encoding the complete sequence of CK 2, which is a type II CK different from--but related to--epidermal CKs 1 and 5 on the one hand and corneal CK 3 on the other. The mRNA of approximately 2.6 kb encodes a polypeptide of 645 amino acids and M(r) 65,852, in good agreement with the value of 65.5 kDa previously estimated from gel electrophoresis. This human CK, the largest so far known, displays several features typical of CKs of stratified epithelia, including numerous repeats of glycine-rich tetrapeptides in the head and tail domains. Northern blot and in situ hybridizations have shown that CK 2 is expressed strictly suprabasally, usually starting in the third or fourth cell layer of epidermis, and this was confirmed at the protein level by immunohistochemistry using CK 2-specific antibodies. The protein has been detected as a regular epidermal component in skin samples from different body sites, albeit as a minor CK in "soft skin" (e.g., breast nipple, penile shaft, axilla), but not in foreskin epithelium and in other epithelia, in squamous metaplasias and carcinomas, or in cultured cell lines derived therefrom. We propose that CK 2 is a late cytoskeletal IF addition synthesized during maturation of epidermal keratinocytes which probably contributes to terminal cornification. 相似文献
3.
Leinweber B Parissenti AM Gallant C Gangopadhyay SS Kirwan-Rhude A Leavis PC Morgan KG 《The Journal of biological chemistry》2000,275(51):40329-40336
Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC. 相似文献
4.
Phosphorylation of the cytoskeletal protein talin by protein kinase C 总被引:12,自引:0,他引:12
Talin, a component of the focal contact of cultured cells, is an in vitro substrate for protein kinase C. Immunoprecipitation confirms that talin is the phosphorylated protein. Phosphorylation is dependent on both phosphatidylserine and calcium and reaches a level of incorporation of 0.8 mol phosphate/mol protein. Phosphoamino acid analysis demonstrates the presence of phosphoserine and phosphothreonine, but no phosphotyrosine. Two dimensional mapping of tryptic peptides, and V8 peptides reveals the existence of multiple phosphorylation sites. The identification of talin as a substrate for protein kinase C implicates talin as a potential regulator of focal contact organization and perhaps cell morphology. 相似文献
5.
Vinculin, a cytoskeletal substrate of protein kinase C 总被引:22,自引:0,他引:22
Vinculin, a cytoskeletal protein localized at adhesion plaques, is a phosphoprotein containing phosphoserine, phosphothreonine, and phosphotyrosine. Vinculin has been previously shown to be a substrate for pp60src, a phosphotyrosine protein kinase, but the kinase(s) responsible for phosphorylation of the other amino acid residues is unknown. The present report examines the phosphorylation of vinculin by various serine- and threonine-specific protein kinases. Only protein kinase C, the calcium-activated phospholipid-dependent protein kinase, phosphorylates vinculin at a significant rate (24 nmol/min/mg) and displays marked specificity for vinculin. Both calcium and phosphatidylserine were required for vinculin phosphorylation by protein kinase C. In addition, both phorbol 12,13-dibutyrate (10 nM) and phorbol 12-myristate 13-acetate (10 nM) stimulated vinculin phosphorylation by protein kinase C at a limiting calcium concentration (10(-6) M). Tryptic peptide analysis revealed two major sites of phosphorylation. One site contained phosphoserine and the other contained phosphothreonine. When compared with tryptic maps of vinculin phosphorylated by src kinase, no overlapping phosphorylated peptides were found. The present findings coupled with the plasma membrane location of both these proteins suggest that vinculin may be a physiologic substrate for protein kinase C. 相似文献
6.
7.
Identification of a 33-kilodalton cytoskeletal protein with high affinity for the sodium channel 总被引:1,自引:0,他引:1
The voltage-sensitive sodium channel is an intrinsic membrane protein that is nonrandomly distributed in neurons, suggesting a possible interaction with other cellular constituents. In this study, we have directly tested the hypothesis that components of the cytoskeleton interact with sodium channels. Utilizing the methods of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blot overlay, we have identified a 33-kilodalton cytoskeletal protein (p33) that binds 32P-labeled sodium channel purified from rat brain. This binding is a high-affinity (KD less than 1 nM) protein-protein interaction that is blocked by low concentrations of unlabeled sodium channels but is not blocked by monosaccharides, the complex glycoprotein fetuin, the transmembrane protein Na+-K+-ATPase, or bovine serum albumin. Levels of p33 are highest in lung and spleen while lower levels are found in brain, peripheral nerve, skeletal muscle, liver, and testes. This tissue distribution implies that the sodium channel may not be the only ligand for p33. 相似文献
8.
Amino acid sequence and gene organization of cytokeratin no. 19, an exceptional tail-less intermediate filament protein. 总被引:23,自引:6,他引:23
下载免费PDF全文

We have isolated a cDNA clone from a bovine bladder urothelium library which encodes the smallest intermediate filament (IF) protein known, i.e. the simple epithelial cytokeratin (equivalent to human cytokeratin 19) previously thought to have mol. wt 40,000. This clone was then used to isolate the corresponding gene from which we have determined the complete nucleotide sequence and deduced the amino acid sequence of the encoded protein. This cytokeratin of 399 amino acids (mol. wt 43,893) is identified as a typical acidic (type I) cytokeratin but differs from all other IF proteins in that it does not show the carboxyterminal, non-alpha-helical tail domain. Instead it contains a 13 amino acids extension of the alpha-helical rod. The gene encoding cytokeratin 19 is also exceptional. It contains only five introns which occur in positions corresponding to intron positions in other IF protein genes. However, an intron which in all other IF proteins demarcates the region corresponding to the transition from the alpha-helical rod into the non-alpha-helical tail is missing in the cytokeratin 19 gene. Using in vitro reconstitution of purified cytokeratin 19 we show that it reacts like other type I cytokeratins in that it does not form, in the absence of a type II cytokeratin partner, typical IF. Instead it forms 40-90 nm rods of 10-11 nm diameter which appear to represent lateral associations of a number of cytokeratin molecules. Our results demonstrate that the non-alpha-helical tail domain is not an indispensable feature of IF proteins. The gene structure of this protein provides a remarkable case of a correlation of a change in protein conformation with an exon boundary. 相似文献
9.
A protein kinase C isozyme is translocated to cytoskeletal elements on activation. 总被引:19,自引:2,他引:19
下载免费PDF全文

D Mochly-Rosen C J Henrich L Cheever H Khaner P C Simpson 《Molecular biology of the cell》1990,1(9):693-706
Protein kinase C (PKC)1 isozymes comprise a family of related cytosolic kinases that translocate to the cell particulate fraction on stimulation. The activated enzyme is thought to be on the plasma membrane. However, phosphorylation of protein substrates occurs throughout the cell and is inconsistent with plasma membrane localization. Using an isozyme-specific monoclonal antibody we found that, on activation, this PKC isozyme translocates to myofibrils in cardiac myocytes and to microfilaments in fibroblasts. Translocation of this activated PKC isozyme to cytoskeletal elements may explain some of the effects of PKC on cell contractility and morphology. In addition, differences in the translocation site of individual isozymes--and, therefore, phosphorylation of different substrates localized at these sites--may explain the diverse biological effects of PKC. 相似文献
10.
Identification of glycosylphosphatidylinositol-specific phospholipases C in mouse brain membranes. 总被引:2,自引:0,他引:2
下载免费PDF全文

Using the membrane form of variant surface glycoprotein from Trypanosoma equiperdum labelled with [3H]myristate as a substrate, we identified two glycosylphosphatidylinositol phospholipase C enzymic activities in mouse brain. These activities were associated with particulate membrane fractions. They were characterized by their pH activity maxima and sensitivity to activators and ion chelators. One of the activities was maximal at acidic pH, stimulated by butanol, sensitive to cation chelator and insensitive to manganese. The activity of the other was maximal at neutral pH, stimulated by the detergent deoxycholate and independent of the presence of cation chelator or calcium. On membrane subfractionation, the acidic butanol-stimulated activity was found mainly associated with the lysosomal compartment, whereas the neutral deoxycholate-stimulated activity sediments with the myelin and plasma membrane compartment. These activities could be differentiated from particulate phosphatidylinositol phospholipases C, whose acidic lysosomal form is sensitive to manganese and insensitive to cation chelator or butanol, whereas the deoxycholate-activated enzymes are Ca2(+)-dependent. 相似文献
11.
Qin P Haberbusch JM Zhang Z Soprano KJ Soprano DR 《The Journal of biological chemistry》2004,279(16):16263-16271
12.
13.
Isolation of cDNA clones for mouse cytoskeletal gamma-actin and differential expression of cytoskeletal actin mRNAs in mouse cells. 总被引:3,自引:2,他引:3
下载免费PDF全文

K Tokunaga K Takeda K Kamiyama H Kageyama K Takenaga S Sakiyama 《Molecular and cellular biology》1988,8(9):3929-3933
We described the structures of mouse cytoskeletal gamma-actin cDNA clones and showed that there is strong conservation of the untranslated regions with human gamma-actin cDNA. In addition, we found that the expression levels of beta- and gamma-actin mRNAs are differentially controlled in various mouse tissues and cell types but are coordinately increased in the cellular growing state. These results suggest that there are multiple regulatory mechanisms of cytoskeletal actin genes and are consistent with the argument that beta- and gamma-actins might have functional diversity in mammalian cells. 相似文献
14.
15.
Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae 总被引:5,自引:0,他引:5
During asymmetric cell division, cell fate determinants localize asymmetrically and segregate into one of the two daughter cells. In Drosophila neuroblasts, the asymmetric localization of cell fate determinants to the basal cell cortex requires aPKC. aPKC localizes to the apical cell cortex and phosphorylates the cytoskeletal protein Lethal (2) giant larvae (Lgl). Upon phosphorylation, Lgl dissociates from the cytoskeleton and becomes inactive. Here, we show that phosphorylation regulates Lgl by allowing an autoinhibitory interaction of the N terminus with the C terminus of the protein. We demonstrate that interaction with the cytoskeleton is mediated by a C-terminal domain while the N terminus is not required. Instead, the N terminus can bind to the C terminus and can compete for binding to the cytoskeleton. Interaction between the N- and C-terminal domains requires phosphorylation of Lgl by aPKC. Our results suggest that unphosphorylated, active Lgl exists in an open conformation that interacts with the cytoskeleton while phosphorylation changes the protein to an autoinhibited state. 相似文献
16.
cDNA sequence of five mouse guanine deaminase (Gda) alleles and mapping to mouse chromosome 19. 总被引:1,自引:0,他引:1
Guanine deaminase catalyses the conversion of guanine to xanthine and ammonia, thereby irreversibly removing the guanine base from the pool of guanine-containing metabolites. We have identified five alleles at the mouse guanine deaminase locus by cDNA sequencing. These alleles were defined by single-nucleotide polymorphisms at a total of 19 positions. For each allele the representative strains are as follows: Gda(a), C57BL/6J and DBA/2J; Gda(b), A/J; Gda(c), MOLF/Ei; Gda(d), CAST/Ei; and Gda(e), SPRET-1. The only codon change resulting in an amino acid substitution was found at nucleotide 523, where GAT was replaced by AAT in Mus spretus resulting in the deduced substitution of Asp-174 by Asn. The single-nucleotide difference between the a and b alleles was also typed by allele-specific oligonucleotide amplification for 17 common strains of Mus musculus susbp. musculus. By typing the AxB and BxA recombinant inbred (RI) strain sets, Gda was mapped to mouse chromosome 19, a region syntenic with human chromosome 9q11-q22. 相似文献
17.
The localization and some characteristics of mouse adrenal C19-steroid 5 beta-reductase were determined by the incubation of subcellular fractions of mouse adrenal tissue with [7 alpha-3H]androst-4-ene-3,17-dione. This enzyme was present only in the soluble fraction and was NADPH-dependent, although a small activity in the presence of NADH was also detected. The soluble fraction also contained 3alpha-, 3beta- and a small amount of 17 beta-hydroxy steroid dehydrogenase. These and other steroid-metabolizing enzymes present in the remaining subcelluar fractions are also described briefly. To measure 5 beta-androstane-3,17-dione production by the mouse adrenal soluble fraction, all 5 beta products first had to be oxidized to 5 beta-androstane-3,17-dione, and the recovery of radio-activity between the substrate androst-4-ene-3,17-dione and product 5 beta-androstane-3,17-dione of 96.1 +/-3.2% validated this technique. C19-steroid 5 beta-reductase has a pH optimum of 6.5 and at low substrate concentrations the Km and Vmax. for 5 beta reduction of [7 alpha-3H]androst-4-ene-ene-3,17-dione was 2.22 times 10(-6) "/- 0.48 times 10(-6) M and 450+/- 53 pmol/min per mg of protein respectively. At high substrate concentration, inhibition of the reaction occurred, which was shown to be due to increasing product concentration. 相似文献
18.
Identification of the mouse muscle 43,000-dalton acetylcholine receptor-associated protein (RAPsyn) by cDNA cloning 总被引:6,自引:0,他引:6
D E Frail L L McLaughlin J Mudd J P Merlie 《The Journal of biological chemistry》1988,263(30):15602-15607
The nicotinic acetylcholine receptor and a receptor-associated protein of 43 kDa are the major proteins present in postsynaptic membranes isolated from Torpedo electric organ. Immunochemical analyses indicated that a protein sharing antigenic determinants with the receptor-associated protein is also present at receptor clusters of muscle cell lines and postsynaptic membranes of vertebrate neuromuscular junctions. We now provide definitive proof that a homolog of the 43-kDa protein exists in mammals. Complimentary DNA clones encoding the complete protein sequence have been isolated from the mouse muscle cell line, BC3H1. We heretofore refer to these proteins as nicotinic receptor-associated proteins at synapses or N-RAP-syns. The deduced sequence of mouse RAPsyn has 412 amino acids and a molecular mass of 46,392 daltons. The overall identity with Torpedo RAPsyn is 70%; some regions are extremely well conserved and are therefore postulated to be functionally important. Important domains, including the amino terminus and a cAMP-dependent protein kinase phosphorylation site, are conserved between species. Several structural features are consistent with the proposal that RAPsyn is a peripheral membrane protein that associates with membranes by virtue of covalently bound myristate. Although multiple mRNAs were previously identified in Torpedo electric organ, RNA blot analysis reveals a single polyadenylated RAPsyn mRNA of approximately equal to 2.0 kilobases in newborn and 4-week-old mouse muscle. Finally, genomic DNA blot analysis indicates that a single N-RAPsyn gene is present in the mouse genome. 相似文献
19.
Protein C (PC) is a vitamin K-dependent serine protease, a deficiency of which results in thrombus. There is no spontaneously occurring mouse model of the disease. Attempts to create such a model in mice by using anti-sense gene technology requires isolation of a normal mouse PC cDNA. When a mouse liver (BALB/c) cDNA library was screened using a human PC cDNA as a probe, nine overlapping cDNA clones were isolated and sequenced. The cloned mouse PC cDNA comprised 1,512 nucleotides and the open reading frame of the cDNA encoded a polypeptide of 461 amino acids residues including a leader peptide composed of 41 amino acids. Mouse PC exhibited high homology to both human and bovine PCs. Mouse PC also had several structural features common in other PCs; locations of 23 Cys residues, location of putative beta-hydroxy Asp71, possible carbohydrate attachment sites involving Asp residues at amino acid positions 249, 314, and 330, and location of active sites such as His212, Asp258, and Ser361. Northern blot hybridization analysis identified a single species of mouse PC mRNA (2.0 kb in length) in mouse liver. 相似文献
20.
A synthetic nonadecapeptide (IL 19) derived from a sequence of v-myb was covalently bound to haemocyanin and used for immunization. Anti-IL 19 serum immunoprecipitated a 75 kDa protein in the lysate of metabolically labelled chicken and murine thymus cells. Presaturation of the serum with IL 19 abolished this immunoprecipitation, thus indicating that the product of c-myb in both chicken and murine thymuses is the 75 kDa protein (p75c-myb). Anti IL 19 serum also precipitated p48v-myb in the lysate of nonproducer myeloblasts. 相似文献