首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The sexual development and virulence of the fungal pathogen Cryptococcus neoformans is controlled by a bipolar mating system determined by a single locus that exists in two alleles, α and a. The α and a mating-type alleles from two divergent varieties were cloned and sequenced. The C. neoformans mating-type locus is unique, spans >100 kb, and contains more than 20 genes. MAT-encoded products include homologs of regulators of sexual development in other fungi, pheromone and pheromone receptors, divergent components of a MAP kinase cascade, and other proteins with no obvious function in mating. The α and a alleles of the mating-type locus have extensively rearranged during evolution and strain divergence but are stable during genetic crosses and in the population. The C. neoformans mating-type locus is strikingly different from the other known fungal mating-type loci, sharing features with the self-incompatibility systems and sex chromosomes of algae, plants, and animals. Our study establishes a new paradigm for mating-type loci in fungi with implications for the evolution of cell identity and self/nonself recognition.  相似文献   

4.
Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, α and a. However, the overwhelming predominance of mating type (MAT) α over a in C. neoformans populations limits αa mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between α isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural αADα hybrids that arose by fusion between two α cells of different serotypes (A and D) were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1α was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed αADα strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population.  相似文献   

5.
The most common cause of fungal meningitis in humans, Cryptococcus neoformans serotype A, is a basidiomycetous yeast with a bipolar mating system. However, the vast majority (>99.9%) of C. neoformans serotype A isolates possess only one of the two mating type alleles (MATα). Isolates with the other allele (MATa) were recently discovered and proven to mate in the laboratory. It has been a mystery whether and where C. neoformans strains undergo sexual reproduction. Here, we applied population genetic approaches to demonstrate that a population of C. neoformans serotype A clinical isolates from Botswana contains an unprecedented proportion of fertile MATa isolates and exhibits evidence of both clonal expansion and recombination within two partially genetically isolated subgroups. Our findings provide evidence for sexual recombination among some populations of C. neoformans serotype A from sub-Saharan Africa, which may have a direct impact on their evolution.  相似文献   

6.
Cryptococcus neoformans is a human fungal pathogen that exists as three distinct varieties or sibling species: the predominantly opportunistic pathogens C. neoformans var. neoformans (serotype D) and C. neoformans var. grubii (serotype A) and the primary pathogen C. neoformans var. gattii (serotypes B and C). While serotypes A and D are cosmopolitan, serotypes B and C are typically restricted to tropical regions. However, serotype B isolates of C. neoformans var. gattii have recently caused an outbreak on Vancouver Island in Canada, highlighting the threat of this fungus and its capacity to infect immunocompetent individuals. Here we report a large-scale analysis of the mating abilities of serotype B and C isolates from diverse sources and identify unusual strains that mate robustly and are suitable for further genetic analysis. Unlike most isolates, which are of both the a and α mating types but are predominantly sterile, the majority of the Vancouver outbreak strains are exclusively of the α mating type and the majority are fertile. In an effort to enhance mating of these isolates, we identified and disrupted the CRG1 gene encoding the GTPase-activating protein involved in attenuating pheromone response. crg1 mutations dramatically increased mating efficiency and enabled mating with otherwise sterile isolates. Our studies provide a genetic and molecular foundation for further studies of this primary pathogen and reveal that the Vancouver Island outbreak may be attributable to a recent recombination event.  相似文献   

7.
Cryptococcus neoformans is a human fungal pathogen that causes lethal infections of the lung and central nervous system in immunocompromised individuals. C. neoformans has a defined bipolar sexual life cycle with a and α mating types. During the sexual cycle, which can occur between cells of opposite mating types (bisexual reproduction) or cells of one mating type (unisexual reproduction), a dimorphic transition from yeast to hyphal growth occurs. Hyphal development and meiosis generate abundant spores that, following inhalation, penetrate deep into the lung to enter the alveoli, germinate, and establish a pulmonary infection growing as budding yeast cells. Unisexual reproduction has been directly observed only in the Cryptococcus var. neoformans (serotype D) lineage under laboratory conditions. However, hyphal development has been previously associated with reduced virulence and the serotype D lineage exhibits limited pathogenicity in the murine model. In this study we show that the serotype D hyperfilamentous strain XL280α is hypervirulent in an animal model. It can grow inside the lung of the host, establish a pulmonary infection, and then disseminate to the brain to cause cryptococcal meningoencephalitis. Surprisingly, this hyperfilamentous strain triggers an immune response polarized towards Th2-type immunity, which is usually observed in the highly virulent sibling species C. gattii, responsible for the Pacific Northwest outbreak. These studies provide a technological advance that will facilitate analysis of virulence genes and attributes in C. neoformans var. neoformans, and reveal the virulence potential of serotype D as broader and more dynamic than previously appreciated.  相似文献   

8.
The ubiquitous environmental human pathogen Cryptococcus neoformans is traditionally considered a haploid fungus with a bipolar mating system. In nature, the α mating type is overwhelmingly predominant over a. How genetic diversity is generated and maintained by this heterothallic fungus in a largely unisexual α population is unclear. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions generating both diploid intermediates and haploid recombinant progeny. Same-sex mating (α-α) also occurs in nature as evidenced by the existence of natural diploid αADα hybrids that arose by fusion between two α cells of different serotypes (A and D). How significantly this novel sexual style contributes to genetic diversity of the Cryptococcus population was unknown. In this study, ∼500 natural C. neoformans isolates were tested for ploidy and close to 8% were found to be diploid by fluorescence flow cytometry analysis. The majority of these diploids were serotype A isolates with two copies of the α MAT locus allele. Among those, several are intra-varietal allodiploid hybrids produced by fusion of two genetically distinct α cells through same-sex mating. The majority, however, are autodiploids that harbor two seemingly identical copies of the genome and arose via either endoreplication or clonal mating. The diploids identified were isolated from different geographic locations and varied genotypically and phenotypically, indicating independent non-clonal origins. The present study demonstrates that unisexual mating produces diploid isolates of C. neoformans in nature, giving rise to populations of hybrids and mixed ploidy. Our findings underscore the importance of same-sex mating in shaping the current population structure of this important human pathogenic fungus, with implications for mechanisms of selfing and inbreeding in other microbial pathogens.  相似文献   

9.
Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, α and a. However, the overwhelming predominance of mating type (MAT) α over a in C. neoformans populations limits α–a mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between α isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural αADα hybrids that arose by fusion between two α cells of different serotypes (A and D) were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1α was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed αADα strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population.  相似文献   

10.
Cryptococcus gattii is a basidiomycetous human fungal pathogen that typically causes infection in tropical and subtropical regions and is responsible for an ongoing outbreak in immunocompetent individuals on Vancouver Island and in the Pacific Northwest of the US. Pathogenesis of this species may be linked to its sexual cycle that generates infectious propagules called basidiospores. A marked predominance of only one mating type (α) in clinical and environmental isolates suggests that a-α opposite-sex reproduction may be infrequent or geographically restricted, raising the possibility of an alternative unisexual cycle involving cells of only α mating type, as discovered previously in the related pathogenic species Cryptococcus neoformans. Here we report observation of hallmark features of unisexual reproduction in a clinical isolate of C. gattii (isolate 97/433) and describe genetic and environmental factors conducive to this sexual cycle. Our results are consistent with population genetic evidence of recombination in the largely unisexual populations of C. gattii and provide a useful genetic model for understanding how novel modes of sexual reproduction may contribute to evolution and virulence in this species.  相似文献   

11.
Unisexual reproduction is a novel homothallic sexual cycle recently discovered in both ascomycetous and basidiomycetous pathogenic fungi. It is a form of selfing that induces the yeast-to-hyphal dimorphic transition in isolates of the α mating type of the human fungal pathogen Cryptococcus neoformans. Unisexual reproduction may benefit the pathogen by facilitating sexual reproduction in the absence of the opposite a mating type and by generating infectious propagules called basidiospores. Here, we report an independent potential selective advantage of unisexual reproduction beyond genetic exchange and recombination. We competed a wild-type strain capable of undergoing unisexual reproduction with mutants defective in this developmental pathway and found that unisexual reproduction provides a considerable dispersal advantage through hyphal growth and sporulation. Our results show that unisexual reproduction may serve to facilitate access to both nutrients and potential mating partners and may provide a means to maintain the capacity for dimorphic transitions in the environment.  相似文献   

12.
Cryptococcus neoformans is the leading cause of cryptococcal meningitis, which is associated with high mortality due to lack of effective treatment. Herein a series of tricyclic isoxazole derivatives with excellent anti-cryptococcal activities were identified by structural simplification and scaffold hopping of antifungal natural product sampangine. Particularly, compound 8a showed promising features as an anti-cryptococcal lead compound. It was highly active against C. neoformans (MIC80?=?0.031?μg/mL), which was more potent than fluconazole and voriconazole. Moreover, compound 8a showed potent fungicidal activity and had potent inhibitory effects against important virulence factors (i.e. biofilm, melanin and urease) of C. neoformans. Preliminary antifungal mechanism investigation revealed that compound 8a induced apoptosis of C. neoformans cells and arrested the cell cycle at the G1/S phase.  相似文献   

13.
The consequences of preferential mating in the presence of partial assortative and sexual selection mechanisms are ascertained for a two-allele one-locus trait involving two phenotype classes C1 = {all homozygotes} and C2 = {heterozygotes}. Relevant biological cases may include Burley (1977, Proc. Nat. Acad. Sci. USA74, 3476–3479), Wilbur et al. (1978, Evolution32, 264–270), and Singh and Zouros (1978, Evolution32, 342–353). When the preference rate for the heterozygote exceeds that for homozygotes, it is established that the unique stable state is the central Hardy-Weinberg equilibrium. The rate of approach is faster with sexual selection than for the corresponding model of assortative mating. When the preference rates favor the homozygotes then in this symmetric model of sexual selection two asymmetric Hardy-Weinberg polymorphisms can evolve, and which succeeds depends on initial conditions. The models are also analyzed with natural selection acting on phenotypes superimposed on assortative mating. In this case we can have up to three coexisting stable states involving both fixation alternatives and a central polymorphism. The corresponding model with sexual selection maintains either the central equilibrium as in assortative mating or two asymmetric polymorphic equilibria.  相似文献   

14.
Bui T  Lin X  Malik R  Heitman J  Carter D 《Eukaryotic cell》2008,7(10):1771-1780
Sexual reproduction and genetic exchange are important for the evolution of fungal pathogens and for producing potentially infective spores. Studies to determine whether sex occurs in the pathogenic yeast Cryptococcus neoformans var. grubii have produced enigmatic results, however: basidiospores are the most likely infective propagules, and clinical isolates are fertile and genetically diverse, consistent with a sexual species, but almost all populations examined consist of a single mating type and have little evidence for genetic recombination. The choice of population is critical when looking for recombination, particularly when significant asexual propagation is likely and when latency may complicate assessing the origin of an isolate. We therefore selected isolates from infected animals living in the region of Sydney, Australia, with the assumption that the relatively short life spans and limited travels of the animal hosts would provide a very defined population. All isolates were mating type α and were of molecular genotype VNI or VNII. A lack of linkage disequilibrium among loci suggested that genetic exchange occurred within both genotype groups. Four diploid VNII isolates that produced filaments and basidium-like structures when cultured in proximity to an a mating type strain were found. Recent studies suggest that compatible α-α unions can occur in C. neoformans var. neoformans populations and in populations of the sibling species Cryptococcus gattii. As a mating type strains of C. neoformans var. grubii have never been found in Australia, or in the VNII molecular type globally, the potential for α-α unions is evidence that α-α unisexual mating maintains sexual recombination and diversity in this pathogen and may produce infectious propagules.  相似文献   

15.
16.
17.
Our earlier findings established that cyclic AMP-dependent protein kinase functions in a signaling cascade that regulates mating and virulence of Cryptococcus neoformans var. grubii (serotype A). Mutants lacking the serotype A protein kinase A (PKA) catalytic subunit Pka1 are unable to mate, fail to produce melanin or capsule, and are avirulent in animal models, whereas mutants lacking the PKA regulatory subunit Pkr1 overproduce capsule and are hypervirulent. Because other mutations have been observed to confer different phenotypes in two diverged varieties of C. neoformans (grubii variety [serotype A] and neoformans variety [serotype D]), we analyzed the functions of the PKA genes in the serotype D neoformans variety. Surprisingly, the Pka1 catalytic subunit was not required for mating, haploid fruiting, or melanin or capsule production of serotype D strains. Here we identify a second PKA catalytic subunit gene, PKA2, that is present in both serotype A and D strains of C. neoformans. The divergent Pka2 catalytic subunit was found to regulate mating, haploid fruiting, and virulence factor production in serotype D strains. In contrast, Pka2 has no role in mating, melanin production, or capsule formation in serotype A strains. Our studies illustrate how different components of signaling pathways can be co-opted and functionally specialized during the evolution of related but distinct varieties or subspecies of a human fungal pathogen.  相似文献   

18.
Twenty-one strains ofCryptococcus neoformans isolated from patients in Taiwan were characterized for serotypes and mating types. Slide agglutination test was performed with 8 factor-specific sera (Iatron Company, Japan) to determine the serotypes. Wheat bran agar (WBA) and malt extract agar (MEA, Wickerham) media were used for the mating tests. Twenty of the isolates were of serotype A, and one was serotype B. Except for 2 strains of serotype A, all of the serotype A strains mated withFilobasidiella neoformans var.neoformans, mating type a. The only serotype B strain mated withF. neoformans var.bacillispora mating type a in MEA medium. These data revealed the low prevalence (1/21; 4.8%) ofC. neoformans var.gattii in Taiwan, a subtropically located island.  相似文献   

19.
During sexual development the human fungal pathogen Cryptococcus neoformans undergoes a developmental transition from yeast-form growth to filamentous growth. This transition requires cellular restructuring to form a filamentous dikaryon. Dikaryotic growth also requires tightly controlled nuclear migration to ensure faithful replication and dissemination of genetic material to spore progeny. Although the gross morphological changes that take place during dikaryotic growth are largely known, the molecular underpinnings that control this process are uncharacterized. Here we identify and characterize a C. neoformans homolog of the Saccharomyces cerevisiae BIM1 gene, and establish the importance of BIM1 for proper filamentous growth of C. neoformans. Deletion of BIM1 leads to truncated sexual development filaments, a severe defect in diploid formation, and a block in monokaryotic fruiting. Our findings lead to a model consistent with a critical role for BIM1 in both filament integrity and nuclear congression that is mediated through the microtubule cytoskeleton.  相似文献   

20.
The fungal species Cryptococcus neoformans and Cryptococcus gattii cause respiratory and neurological disease in animals and humans following inhalation of basidiospores or desiccated yeast cells from the environment. Sexual reproduction in C. neoformans and C. gattii is controlled by a bipolar system in which a single mating type locus (MAT) specifies compatibility. These two species are dimorphic, growing as yeast in the asexual stage, and producing hyphae, basidia, and basidiospores during the sexual stage. In contrast, Filobasidiella depauperata, one of the closest related species, grows exclusively as hyphae and it is found in association with decaying insects. Examination of two available strains of F. depauperata showed that the life cycle of this fungal species shares features associated with the unisexual or same-sex mating cycle in C. neoformans. Therefore, F. depauperata may represent a homothallic and possibly an obligately sexual fungal species. RAPD genotyping of 39 randomly isolated progeny from isolate CBS7855 revealed a new genotype pattern in one of the isolated basidiospores progeny, therefore suggesting that the homothallic cycle in F. depauperata could lead to the emergence of new genotypes. Phylogenetic analyses of genes linked to MAT in C. neoformans indicated that two of these genes in F. depauperata, MYO2 and STE20, appear to form a monophyletic clade with the MAT a alleles of C. neoformans and C. gattii, and thus these genes may have been recruited to the MAT locus before F. depauperata diverged. Furthermore, the ancestral MAT a locus may have undergone accelerated evolution prior to the divergence of the pathogenic Cryptococcus species since several of the genes linked to the MAT a locus appear to have a higher number of changes and substitutions than their MATα counterparts. Synteny analyses between C. neoformans and F. depauperata showed that genomic regions on other chromosomes displayed conserved gene order. In contrast, the genes linked to the MAT locus of C. neoformans showed a higher number of chromosomal translocations in the genome of F. depauperata. We therefore propose that chromosomal rearrangements appear to be a major force driving speciation and sexual divergence in these closely related pathogenic and saprobic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号