首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alizarine sulfonate, the anthraquinone containing both sulfonate and hydroxyl groups, showed an activating and inhibitory effect on the chicken erythrocyte AMP deaminase (EC 3.5.4.6). The cooperative effect of AMP, analyzed in terms of Hill coefficient, was decreased from 2.4 to 1.1 with the increase in the dye concentration, suggesting the dye as an allosteric activator of the enzyme. However, alizarine sulfonate acted as a mixed type inhibitor in the presence of higher level of AMP. The action of alizarine sulfonate can be accounted for by assuming that the dye binds to the enzyme at the allosteric-activating sites with a broad specificity toward nucleotide binding, and further at the specific inhibitory sites.  相似文献   

2.
The allosteric properties of AMP deaminase [EC 3.5.4.6] from chicken erythrocytes have been qualitatively and quantitatively accounted for by the concerted transition theory of Monod et al., on the assumption that this enzyme has different numbers of binding sites for each ligand. Theoretical curves yield a satisfactory fit for all experimental saturation functions with respect to activation by alkali metals and inhibition by Pi, assuming that the numbers of binding sites for AMP, alkali metals, and Pi are 4, 2, and 4, respectively. The enzyme was inhibited by concentrations of ATP and GTP below 0.1 and 0.25 mM, respectively, whereas activation of the enzyme was observed at ATP and GTP concentrations above 0.4 and 1.5 mM, respectively. These unusual kinetics with respect to ATP and GTP could be also accounted for by assuming 2 inhibitory and 4 activating sites for each ligand.  相似文献   

3.
Inorganic pyrophosphate and polyphosphates have acted as potent inhibitors of purified AMP deaminase (EC 3.5.4.6) from yeast: the activity fell to a definite limit with the increase in the concentration of the inhibitor. The effect of polyphosphate was largely on the maximal velocity of the enzyme with some decrease in affinity. The cooperative effect of AMP, analyzed in terms of a Hill coefficient, remained at 2 in the absence and presence of polyphosphate. Binding of polyphosphate to the enzyme showed no cooperativity. The inhibition of AMP deaminase by polyphosphate can be qualitatively and quantitatively accounted for by the partial mixed-type inhibition mechanism. Both the Ki value for the inhibitor and the breakdown rate of the enzyme-substrate-inhibitor complex are dependent on the chain length of polyphosphate, suggesting that the breakdown rate of the enzyme-substrate-inhibitor complex is regulated by binding of polyphosphate to a specific inhibitory site.  相似文献   

4.
Lys-112 and Tyr-113 in pig kidney fructose-1,6-bisphosphatase (FBPase) make direct interactions with AMP in the allosteric binding site. Both residues interact with the phosphate moiety of AMP while Tyr-113 also interacts with the 3'-hydroxyl of the ribose ring. The role of these two residues in AMP binding and allosteric inhibition was investigated. Site-specific mutagenesis was used to convert Lys-112 to glutamine (K112Q) and Tyr-113 to phenylalanine (Y113F). These amino acid substitutions result in small alterations in k(cat) and increases in K(m). However, both the K112Q and Y113F enzymes show alterations in Mg(2+) affinity and dramatic reductions in AMP affinity. For both mutant enzymes, the AMP concentration required to reduced the enzyme activity by one-half, [AMP](0.5), was increased more than a 1000-fold as compared to the wild-type enzyme. The K112Q enzyme also showed a 10-fold reduction in affinity for Mg(2+). Although the allosteric site is approximately 28 A from the metal binding sites, which comprise part of the active site, these site-specific mutations in the AMP site influence metal binding and suggest a direct connection between the allosteric and the active sites.  相似文献   

5.
The binding to glycogen phosphorylase b of glucose 6-phosphate and inorganic phosphate (respectively allosteric inhibitor and substrate/activator of the enzyme) were studied in the crystal at 0.3 nm (3A) resolution. Glucose 6-phosphate binds in the alpha-configuration at a site that is close to the AMP allosteric effector site at the subunit-subunit interface and promotes several conformational changes. The phosphate-binding site of the enzyme for glucose 6-phosphate involves contacts to two cationic residues, Arg-309 and Lys-247. This site is also occupied in the inorganic-phosphate-binding studies and is therefore identified as a high-affinity phosphate-binding site. It is distinct from the weaker phosphate-binding site of the enzyme for AMP, which is 0.27 nm (2.7A) away. The glucose moiety of glucose 6-phosphate and the adenosine moiety of AMP do not overlap. The results provide a structural explanation for the kinetic observations that glucose 6-phosphate inhibition of AMP activation of phosphorylase b is partially competitive and highly co-operative. The results suggest that the transmission of allosteric conformational changes involves an increase in affinity at phosphate-binding sites and relative movements of alpha-helices. In order to study glucose 6-phosphate and phosphate binding it was necessary to cross-link the crystals. The use of dimethyl malondi-imidate as a new cross-linking reagent in protein crystallography is discussed.  相似文献   

6.
1. Rat skeletal muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) at optimal KCl concentrations shows a biphasic response to increasing levels of the allosteric inhibitor ATP. 2. Up to 10 micrometer, ATP appears to convert the enzyme to a form exhibiting sigmoidal kinetics while at higher concentrations its inhibitory effect is manifested by an alteration of AMP binding to AMP deaminase indicative of negative homotropic cooperativity at about 50% saturation. 3. AMP deaminase is inactivated by incubation with the periodate oxidation product of ATP. The (oxidized ATP)--AMP deaminase complex stabilized by NaBH4 reduction shows kinetic properties similar to those of the native enzyme in the presence of high ATP concentrations. 4. A plausible explanation of the observed cooperativity is that ATP induces different conformational state of AMP deaminase subunits, causing the substrate to follow a sequential mechanism of binding to enzyme. 5. Binding of the radioactive oxidized ATP shows that 3.2 mol of this reagent bind per mol AMP deaminase.  相似文献   

7.
It was shown that AMP, an allosteric inhibitor of fructose-1.6-bisphosphatase, decreases the apparent affinity of the enzyme for the activating cation, Mg2+, which is accompanied by a decrease of the kinetic cooperativity between the Mg2+-binding sites. In its turn, the Mg2+ increase diminishes the enzyme sensitivity to the inhibiting effect of AMP and decreases the cooperativity of the inhibitor binding. The heterotropic interactions between the allosteric inhibitor and activator binding centers are consistent with the predictions of the Monod-Wyman-Changeux model which involves two conformational states of the enzyme (of which one is catalytically inactive) differing in their affinity for the ligands. An increase in pH from 7.4 to 9.0 increases the enzyme affinity for Mg2+ and causes an equilibrium shift towards the catalytically active state of the enzyme.  相似文献   

8.
The kinetic analysis of the glycogen chain growth reaction catalyzed by glycogen phosphorylase b from rabbit skeletal muscle has been carried out over a wide range of concentrations of AMP under the saturation of the enzyme by glycogen. The applicability of 23 different variants of the kinetic model involving the interaction of AMP and glucose 1-phosphate binding sites in the dimeric enzyme molecule is considered. A kinetic model has been proposed which assumes: (i) the independent binding of one molecule of glucose 1-phosphate in the catalytic site on the one hand, and AMP in both allosteric effector sites and both nucleoside inhibitor sites of the dimeric enzyme molecule bound by glycogen on the other hand; (ii) the binding of AMP in one of the allosteric effector sites results in an increase in the affinity of other allosteric effector site to AMP; (iii) the independent binding of AMP to the nucleoside inhibitor sites of the dimeric enzyme molecule; (iv) the exclusive binding of the second molecule of glucose 1-phosphate in the catalytic site of glycogen phosphorylase b containing two molecules of AMP occupying both allosteric effector sites; and (v) the catalytic act occurs exclusively in the complex of the enzyme with glycogen, two molecules of AMP occupying both allosteric effector sites, and two molecules of glucose 1-phosphate occupying both catalytic sites.  相似文献   

9.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

10.
Deoxycytidylate deaminase is unique within the zinc-dependent cytidine deaminase family as being allosterically regulated, activated by dCTP, and inhibited by dTTP. Here we present the first crystal structure of a dTTP-bound deoxycytidylate deaminase from the bacteriophage S-TIM5, confirming that this inhibitor binds to the same site as the dCTP activator. The molecular details of this structure, complemented by structures apo- and dCMP-bound, provide insights into the allosteric mechanism. Although the positioning of the nucleoside moiety of dTTP is almost identical to that previously described for dCTP, protonation of N3 in deoxythymidine and not deoxycytidine would facilitate hydrogen bonding of dTTP but not dCTP and may result in a higher affinity of dTTP to the allosteric site conferring its inhibitory activity. Further the functional group on C4 (O in dTTP and NH2 in dCTP) makes interactions with nonconserved protein residues preceding the allosteric motif, and the relative strength of binding to these residues appears to correspond to the potency of dTTP inhibition. The active sites of these structures are also uniquely occupied by dTMP and dCMP resolving aspects of substrate specificity. The methyl group of dTMP apparently clashes with a highly conserved tyrosine residue, preventing the formation of a correct base stacking shown to be imperative for deamination activity. The relevance of these findings to the wider zinc-dependent cytidine deaminase family is also discussed.  相似文献   

11.
Eukaryotes have been proposed to depend on AMP deaminase as a primary step in the regulation of intracellular adenine nucleotide pools. This report describes 1) the role of AMP deaminase in adenylate metabolism in yeast cell extracts, 2) a method for large scale purification of the enzyme, 3) the kinetic properties of native and proteolyzed enzymes, 4) the kinetic reaction mechanism, and 5) regulatory interactions with ATP, GTP, MgATP, ADP, and PO4. Allosteric regulation of yeast AMP deaminase is of physiological significance, since expression of the gene is constitutive (Meyer, S. L., Kvalnes-Krick, K. L., and Schramm, V. L. (1989) Biochemistry 28, 8734-8743). The metabolism of ATP in cell-free extracts of yeast demonstrates that AMP deaminase is the sole pathway of AMP catabolism in these extracts. Purification of the enzyme from bakers' yeast yields a proteolytically cleaved enzyme, Mr 86,000, which is missing 192 amino acids from the N-terminal region. Extracts of Escherichia coli containing a plasmid with the gene for yeast AMP deaminase contained only the unproteolyzed enzyme, Mr 100,000. The unproteolyzed enzyme is highly unstable during purification. Substrate saturation plots for proteolyzed AMP deaminase are sigmoidal. In the presence of ATP, the allosteric activator, the enzyme exhibits normal saturation kinetics. ATP activates the proteolyzed AMP deaminase by increasing the affinity for AMP from 1.3 to 0.2 mM without affecting VM. Activation by ATP is more efficient than MgATP, with half-maximum activation constants of 6 and 80 microM, respectively. The kinetic properties of the proteolyzed and unproteolyzed AMP deaminase are similar. Thus, the N-terminal region is not required for catalysis or allosteric activation. AMP deaminase is competitively inhibited by GTP and PO4 with respect to AMP. The inhibition constants for these inhibitors decrease in the presence of ATP. ATP, therefore, tightens the binding of GTP, PO4, and AMP. The products of the reaction, NH3 and IMP, are competitive inhibitors against substrate, consistent with a rapid equilibrium random kinetic mechanism. Kinetic dissociation constants are reported for the binary and ternary substrate and product complexes and the allosteric modulators.  相似文献   

12.
Purified rat muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) binds tightly to rat myosin. The binding is abolished in the presence of low concentrations of various ligands. Pyrophosphate and GTP at concentrations as low as 0.1 micrometer were effective in abolishing the interaction between two proteins. Other nucleoside triphosphates were less effective than GTP and the concentrations required for 50% inhibition were approximately 0.3 to 0.7 micrometer. ADP and AMP are effective in inhibiting the interaction between two proteins, but they are less effective than the nucleoside triphosphates; 50% inhibition occurred at 34 micrometer with ADP and at 1 mM with AMP. Creatine phosphate and inorganic phosphate showed 50% inhibition at 5 to 6 mM. All of the compounds, which affected AMP deaminase activity, were effective in abolishing the interaction of the enzyme with myosin; however, the interaction-abolishing effects of the compounds are not parallel with their inhibitory effects on the deaminase activity. Although there exist three parental isozymes of AMP deaminase in the rat, all three enzymes interacted with myosin.  相似文献   

13.
T M Martensen  T E Mansour 《Biochemistry》1976,15(23):4973-4980
The allosteric regulation of heart phosphofructokinase was studied at pH 6.9 with an alternative substrate, fructose 6-sulfate. The alternative substrate allowed kinetic studies to be carried out at high enzyme concentrations (0.1 mg/ml) where the effect of allosteric ligands on enzyme physical structure has been studied. A Km for ATP binding (8-10 muM) in the presence of saturating AMP concentrations was found which agreed well with the value obtained at pH 8.2, ATP inhibitory effects closely followed saturation of its substrate site. Hill plots for ATP inhibition gave an interaction coefficient of 3.5 indicating cooperatively between at least four enzyme subunits. Neither AMP nor fructose 6-sulfate affected the cooperativity between the ATP inhibitory sites but only increased the inhibitory threshold. As the ATP concentration was increased from suboptimal to inhibitory levels, interaction coefficients for AMP and fructose 6-sulfate changed from 1 to 2. Increasing citrate concentration resulted in an increase in the interaction coefficient for fructose 6-sulfate to a value of 1.9. Citrate inhibition was synergistic with ATP inhibition with an interaction coefficient of 2. The data indicate that allosteric kinetics of the enzyme can be shown at high enzyme concentrations with the alternative substrate. ATP inhibition appears to involve interaction between at least four subunits, while citrate, AMP, and fructose 6-sulfate interact minimally with two subunits.  相似文献   

14.
The kinetic and molecular properties of AMP deaminase [AMP aminohydrolase, EC 3.5.4.6] purified from baker's yeast (saccharomyces cerevisiae) were investigated. The enzyme was activated by ATP and dATP, but inhibited by Pi and GTP in an allosteric manner. Alkali metal ions and alkaline earth metal ions activated the enzyme to various extent. Kinetic negative cooperativity was observed in the binding of nucleoside triphosphates. Kinetic analysis showed that the number of interaction sites for AMP (substrate) and Pi (inhibitor) is two each per enzyme molecule. The molecular weight of the native enzyme was estimated to be 360,000 by sedimentation equilibrium studies. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the enzyme gave a single polypeptide band with a molecular weight of 83,000, suggesting that the native enzyme has a tetrameric structure. Baker's yeast AMP deaminase was concluded to consist of two "promoter" units which each consist of two polypeptide chains with identical molecular weight.  相似文献   

15.
Glucose interfered with the inhibitory action of hydrophobic compounds, such as n-octanol, diphenylamine and 2-tert-butylphenol, during L-alanine-initiated germination of Bacillus subtilis spores. The action of glucose on the action of the hydrophobic compounds was not competitive, and the binding affinity of glucose was not essentially affected by the hydrophobic compounds, indicating the presence of separate binding sites for glucose and the hydrophobic compounds. The binding affinity of D-alanine, a competitive inhibitor of L-alanine, was not affected by the hydrophobic compounds, indicating separate binding sites for D-alanine and the hydrophobic compounds. A possible arrangement of the binding sites for glucose and for the hydrophobic compounds in relation to those for L- and D-alanine on the spores is discussed.  相似文献   

16.
Brain hexokinase (HKI) is inhibited potently by its product glucose 6-phosphate (G6P); however, the mechanism of inhibition is unsettled. Two hypotheses have been proposed to account for product inhibition of HKI. In one, G6P binds to the active site (the C-terminal half of HKI) and competes directly with ATP, whereas in the alternative suggestion the inhibitor binds to an allosteric site (the N-terminal half of HKI), which indirectly displaces ATP from the active site. Single mutations within G6P binding pockets, as defined by crystal structures, at either the N- or C-terminal half of HKI have no significant effect on G6P inhibition. On the other hand, the corresponding mutations eliminate product inhibition in a truncated form of HKI, consisting only of the C-terminal half of the enzyme. Only through combined mutations at the active and allosteric sites, using residues for which single mutations had little effect, was product inhibition eliminated in HKI. Evidently, potent inhibition of HKI by G6P can occur from both active and allosteric binding sites. Furthermore, kinetic data reported here, in conjunction with published equilibrium binding data, are consistent with inhibitory sites of comparable affinity linked by a mechanism of negative cooperativity.  相似文献   

17.
The inhibitory effect of fructose 2,6-biphosphate on fructose 1,6-bisphosphatase was reinvestigated in order to solve the apparent contradiction between competition with the substrate and the synergism with AMP, a strictly noncompetitive inhibitor. The effect of fructose 2,6-bisphosphate was compared to that of other ligands of the enzyme, which, like the substrate and methyl (alpha + beta)fructofuranoside 1,6-bisphosphate bind to the active site or which, like AMP, bind to an allosteric site. An increase in temperature or pH, or the presence of sulfosalicylate, lithium or higher concentrations of magnesium as well as partial proteolysis by subtilisin increased [I]0.5 for fructose 2,6-bisphosphate and AMP without affecting Km. With the exception of the pH change, all these conditions were also without effect on the affinity of the enzyme for the competitive inhibitor, methyl (alpha + beta)fructofuranoside 1,6-bisphosphate. These observations can be explained by assuming that fructose 2,6-bisphosphate has no affinity for the active site of fructose 1,6-bisphosphatase but binds to an allosteric site which is different from the AMP site. Fructose 2,6-bisphosphate is therefore classified as an allosteric competitive inhibitor and a model is proposed which explains its synergism with AMP as well as the various cooperative effects.  相似文献   

18.
The mechanism of substrate inhibition of rabbit skeletal muscle fructose-1.6-bisphosphatase was examined. Analysis of substrate saturation curves obtained at different concentrations of Mg2+ revealed that the inhibiting effect of the substrate is manifested only within the complex with Mg2+, whereas the free form of the substrate causes no inhibition. Evidence for the allosteric nature of substrate inhibition was obtained by partial desensitization of the enzyme in the presence of salicylates. It was shown that fructose-1.6-bisphosphatase inhibition by the substrate obeys positively cooperative kinetics and is noncompetitive with respect to the substrate involved in the catalytic process. Studies on enzyme modification in the presence of DTNB and pyridoxal-5'-phosphate demonstrated that the inhibiting concentrations of the substrate are bound to the center which differs from the allosteric site for AMP. It is suggested that the antagonism of simultaneous action of AMP and high substrate concentrations may be due to the competition of the phosphate groups of these ligands for binding to the common lysine residue located in the overlapping region of two allosteric sites.  相似文献   

19.
Amino acid replacements in the active site of glucosamine-6-P deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) involving the residues D141 and E148 produce atypical allosteric kinetics. These residues are located in the chain segment 139-156 which is part of the active site and which also forms several intersubunit contacts close to the allosteric site. In the D141N and E148Q mutant forms of this deaminase, there is an inversion of the effect of its physiological allosteric effector, N-acetylglucosamine 6-P, which becomes an inhibitor at substrate concentrations above a critical value. For both mutants, this particular point appears at low substrate concentration and the inhibition by the allosteric activator is the dominant effect in velocity versus substrate curves. These effects are analyzed as a particular case of the concerted allosteric model, assuming that the R state, the conformer displaying the higher affinity for the substrate, is the less catalytic state, thus producing an inverted allosteric response.  相似文献   

20.
1. The activity of beef liver fructose bisphosphatase has been shown to respond cooperatively to increasing concentrations of the activating cations Mg2+ and Mn2+. The allosteric inhibitor AMP caused an increase in this cooperativity and a decrease in the apparent affinity of the enzyme for the activating cation. 2. The cooperative response of the enzyme to AMP is similarly increased by increasing cation concentrations with a concomitant decrease in the apparent affinity. 3. Direct binding experiments indicated that in the absence of either Mg2+ or Mn2+ the enzyme bound AMP non-cooperatively up to a maximum of two molecules per molecule of enzyme, a result that is indicative of half-sites reactivity. The binding became increasingly cooperative as the concentration of the activating cation was increased. 4. The substrate fructose bisphosphate had no effect on any of these cooperative responses. 5. These results may be most simply interpreted in terms of concerted model in which the activating cation functions both as an allosteric activator and as an essential cofactor for the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号