首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ethanol production from 200 g lactose/l by Kluyveromyces fragilis immobilized in calcium alginate was 63 g/l whereas with co-immobilized K. fragilis and Zymomonas mobilis 72 g ethanol/l was attained. With free cells of K. fragilis, only 52 g ethanol/l was obtained. The beads were relatively stable without significant reduction in activity for about six batches of fermentation.The authors are with the Department of Microbiology and Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India.This paper is dedicated to Professor M. Lakshmanan, Vice-Chancellor, Madurai Kamaraj University, in commemoration of his 60th birthday.  相似文献   

2.
Summary Recycled immobilized cells of Kluyveromyces fragilis ATCC 28244 were used for repeated batch production of ethanol from the inulin sugars derived from Jerusalem artichoke tubers. Using 10% initial sugar concentration, a maximum ethanol concentration of 48 g/l was achieved in 7 h when the immobilized cell concentration in the Ca alginate beads was 72 g dry wt. immobilized cell/l bead volume. The maximum ethanol production rate was 13.5 g ethanol/l bioreactor volume/h. The same Ca alginate beads containing the cells were used repeatedly for 11 batch runs starting with fresh medium at the beginning of each run. The ethanol yield was found to be almost constant at 96% of the theoretical for all 11 batch runs, while the maximum ethanol production rate during the last batch run was found to be 70% of the original ethanol rate obtained in the first batch run.  相似文献   

3.
The kinetic model of the hydrolysis of lactose with a beta-galactosidase from Kluyveromyces fragilis immobilized on a commercial silica-alumina (KA-3, from Südchemie) has been determined. A wide experimental range of the main variables has been employed: temperature, concentrations of substrate, and products and concentration of enzyme. The runs were performed in a complex buffer with the salt composition of milk. The effect of pH and temperature on the stability and the activity of the enzyme have been studied. The optimum pH for the enzyme activity was, approximately, seven. The immobilized enzyme was more stable than the free one at acidic pH, but more instable at basic pH. The maximum temperature used for the hydrolysis runs performed to select the kinetic model was 40 degrees C, so inactivation of the enzyme during the kinetic runs has been avoided. Agitation, concentration of enzyme in the solid and particle size were selected to ensure that the overall rate was that of the chemical reaction. Eleven kinetic models were proposed to fit experimental data, from first order to more complex ones, such as those taking into account inhibition by one of the compounds involved in the hydrolysis reaction. Applying statistical and physical criteria, a Michaelis-Menten model with a competitive inhibition by galactose has been selected. The model is able to fit the experimental data correctly in the wide experimental range studied. Finally, the model obtained is compared to the one selected in a previous work for the hydrolysis of lactose with the free enzyme.  相似文献   

4.
Kluyveromyces fragilis cells have been packed into the shell side of an industrial size hollow fibre module. The feed was pumped through the tube side under pressure. During continuous, single-pass operation with a synthetic lactose medium containing 50 g l?1lactose, ethanol productivity was 30–60 g l?1h?1at dilution rates of 1–4 h?1. With 150 g l?1lactose concentration, the productivity was 100–135 g l?1h?1. Productivity was generally lower when cottage cheese whey permeate (45 g l?1lactose) was used as the feed. Long-term stability of the hollow fibre bioreactor was good, provided adequate care was taken to bleed the gas generated and restrict cell concentration in the shell side.  相似文献   

5.
Summary The productivity of continuous ethanol fermentation has been increased using fixed bed reactors where a high density of yeast cells was maintained on a packing of wood chips. Two different systems have been used: 1. A tubular reactor which produced alcohol solutions containing up to 13.5% (V/V) ethanol. High CO2 retention and a poor mass transfer between bulk medium and immobilized biomass prevented production rates higher than 2.2 g/l·h. 2. A multistage reactor where a better utilisation of the reactor volume led to improved performances. Solutions containing 132 g/l of ethanol (16.5% V/V) were produced with a productivity increased up to 4.8 g/l·h. A better distribution of the active biomass and a lower gradient of alcohol concentration between support and bulk medium are possible reasons for this improvement.  相似文献   

6.
Ethanol production from lactose byKluyveromyces fragilis NRRL 665 in monoculture and coculture with strains ofZymomonas mobilis was studied. One of the strains,Z. mobilis NRRL 1960, when cocultured withK. fragilis, produed 55.2 g/l of ethanol, whereasK. fragilis in monoculture procuded only 36 g/l ethanol from 200 g/l lactose medium. Increased Qp (g ethanol produced/g biomass/h) and Qs (g substrate consumed/g biomass/h) were observed in coculture than in monoculture. However, the residual sugar concentration increased in coculture; this increase might be due to the slow utilization rate of galactose.  相似文献   

7.
Summary Saccharomyces cerevisiae yeast immobilized in calcium alginate gel beads was employed in packed-bed column reactors for continuous ethanol production from glucose or cane molasses, and for beer fermentation from barley malt wort. With properly balanced nutrient content or periodical regeneration of cells by nutrient addition and aeration, ethanol production could be maintained for several months. About 7 percent (w/v) ethanol content could be easily maintained with cane molasses diluted to about 17.5 percent (w/v) of total reducing sugars at about 4 to 5 h residence time. Beer of up to 4.5 percent (wv) of ethanol could be produced from barley wort at about 2 h residence time without any addition of nutrients.  相似文献   

8.
Summary In order to minimize the adverse effect of CO2 gas in a packed bed immobilized yeast reactor, a fluidized bed reactor was used for the continuous production of ethanol from glucose. Immobilized yeast was prepared by entrapping whole cells of Saccharomyces cerevisiae within a Caalginate matrix. It was found that the efficiency of the ethanol production in a fluidized bed reactor was 100% better than that for a packed bed reactor system. The alcohol productivity obtained was 21 g/l/hr in a fluidized bed reactor at 94% of conversion level.  相似文献   

9.
The thermotolerant, ethanol producing yeast strain, K. marxianus IMB3 was immobilized in calcium alginate containing magnetically responsive Fe3O4 particles. In these studies the β-galactosidase derived from K. marxianus IMB3 was immobilized onto the Fe3O4 particles prior to inclusion into the alginate matrix. Ethanol production by the immobilized microorganism in the presence of Fe3O4 reached a maximum of 16?g/L on 40?g/L lactose whereas prior immobilization of the enzyme to the particles and inclusion into the alginate matrix increased ethanol production to a maximum concentration of 18 g/L. When Mn2+ was incorporated into fermentations containing the immobilized enzyme in the alginate matrix, ethanol production increased further to a maximum concentration of 20?g/L. In addition, the behaviour of the magnetically responsive biocatalyst containing the co-immobilized enzyme was examined in a batch-fed system in the presence and absence of Mn2+.  相似文献   

10.
Summary Whole cells of lactose fermentingKluyveromyces fragilis had very low -galactosidase activity. Treating the yeast cells with a cationic detergent cetyltrimethylammonium bromide (0.1%) at 4°C for 5 mins increased the enzyme activity 480 fold. Detergent treated cells readily hydrolysed lactose present in milk and sweet whey and glucose produced was not further metabolized. These detergent permeabilized cells could be used to produce low lactose milk, in the utilization of whey and saccharification of lactose or whey for the production of alcohol.  相似文献   

11.
A respiratory-deficient, mutant of Kluyveromyces fragilis was isolated using a ethidium bromide mutagenesis. It was characterized by a loss of cytochromes a + a3 and by an improvement of its inulinase activity. Under anaerobic conditions this mutant was always better than the wild strain for ethanol production especially from Jerusalem artichoke extracts containing large amounts of high polyfructosans ("early" extracts).  相似文献   

12.
Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature, pH, ethanol concentration), cell densities, and gel concentration. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentration were monitored at different feedstock flow rates.  相似文献   

13.
A primarily depressed mutant of Kluyveromyces fragilis showing hyperproduction of inulinase was isolated by means of ethylmethanesulfonate mutation followed by a 2-deoxyglucose selection. This mutant is suitable for the fermentation of inulin and Jerusalem artichoke extracts containing large amounts of inulin high polyfructosans type (“early” extracts).  相似文献   

14.
A rotating packed drum reactor has been proposed as an immobilized whole cell reactor and its performance for ethanol production has been studied with yeast cells immobilized in calcium alginate gel. In a continuous operation with synthetic d-glucose medium containing 125 g d-glucose l?1, ethanol productivity was 20 g l?1 h?1 at a space velocity of 0.38 l (l gel)?1 h?1. With intermittent aeration the viability of yeast cells after 270 h of operation remained above 65%. CO2 removal was easy, but d-glucose conversion was low at a high space velocity.  相似文献   

15.
The effects of ethanol on reactor performance were studied in a small, 5-cm packed height, "differential" type immobilized cell reactor. Lactose utilizing yeast cells, Kluyveromyces fragilis, were absorbed to a porous adsorbant sponge matrix in a gas continuous reactor. Step changes in the feed ethanol concentration to the column (10-130 g/L) were used to test the reactor response over extended periods of time (about 30-50 h per dosage level) followed by a return to basal zero inlet ethanol feed. Effluent cell density and effluent cell viability were measured at intervals. An inhibitory response in ethanol productivity to feed dosage ethanol levels above 20 g/L was detected almost immediately, with a near steady state response noted within 2.5 h of initiating the dosage. Feed ethanol levels above 50 g/L resulted in a subsequent gradual decrease in reactor productivity over time, which was associated with a decrease in the fraction of viable shed cells in the reactor effluent. The reactor response to a step removal of the ethanol inhibition was also monitored. Quick and complete rebounding of the fermentation rate to the original basal rate was noted following dosage concentrations of under 50 g/L ethanol. Recovery rates slowed following ethanol dosage levels above 50 g/L. Viable shed cell density improved overtime during the slow recovery periods. Growth rates (as determined by shed cell density) were more strongly inhibited than productivity. Growth responded more slowly to changes in ethanol environment as growth rates at 30 h fell to about 40% of the rates measured 7.5 h after initiation of a dosage level. It is concluded that ethanol contributions to cell injury and death (and consequent ICR performance degradation) may be more important than ethanol inhibition of productivity rates in the long-term operation of immobilized cell reactors at ethanol concentrations over 50 g/L.  相似文献   

16.
Kluyveromyces marxianus UCD (FST) 55-82 cells were immobilized in Na alginate beads and used in a packed-bed bioreactor system for the continuous production of ethanol from the extract of Jerusalem artichoke tubers. Volumetric ethanol productivities of 104 and 80 g ethanol/ L/h were obtained at 80 and 92% sugar utilization, respectively. The maximum volumetric ethanol productivity of the immobilized cell bioreactor system was found to be 15 times higher than that of an ordinary-stirred-tank (CST) bioreactor using cells of K. marxianus. The immobilized cell bioreactor system was operated continuously at a constant dilution rate of 0.66 h(-1) for 12 days resulting in only an 8% loss of the original immobilized cell activity, which corresponds to an estimated half-life of ca. 72 days. The maximum specific ethanol productivity and maximum specific sugar uptake rate of the immobilized cells were found to be 0.55 g ethanol/g/biomass/h and 1.21 g sugars/g biomass/h, respectively.  相似文献   

17.
Kluyveromyces fragilis immobilized in calcium alginate gel was compared to Saccharomyces cerevisiae coimmobilized with beta-galactosidase, for continuous ethanol production from whey permeate in packed-bed-type columns. Four different whey concentrations were studied, equivalent to 4.5, 10, 15, and 20% lactose, respectively. In all cases the coimmobilized preparation produced more ethanol than K. fragilis. The study went on for more than 5 weeks. K. fragilis showed a decline in activity after 20 days, while the coimmobilized preparation was stableduring the entrire investigation. Under experimental conditions theoretical yields of ethanol were obtained from 4.5 and 10% lactose substrates with the coimmobilized system. Using 15% lactose substrate, theoretical yields were only obtained when a galactose-adapted immobilized S. cerevisiae column was run in series with the coimmobilized column. Then a maximum of 71 g/L ethanol was produced with a productivity of 2.5 g/L h. The coimmobilized column alone gave a maximum ethanol concentration of 52 g/L with a productivity of 4.5 g/L h, whereas immobolized K. fragilis only produced 13 g/L ethanol with a productivity of 1.1 g/L h. It was not possible to obtain theoretical yields of ethanol from the highest substrate concentration.  相似文献   

18.
Summary Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.  相似文献   

19.
Kluyveromyces marxianus CBS 6164 cells, free or immobilized in Ca-alginate (2%) beads, are able to consume more than 99% of the skim milk lactose in anaerobic conditions. In batches at 30 °C, the lactose consumption after 3.5 h of skim milk fermentation by 30 and 50 g free K. marxianus cells per liter was around 99 and 99.6% respectively, with an approximate conversion of lactose to ethanol and CO2 of 80%. The immobilized cells, easy to handle and showing a faster and easier separation from the fermented medium compared to the free ones, were used in more than 23 batches (cycles of re-use) without losing their activity.  相似文献   

20.
In the present study the optimized parameters for highest ethanol productivity by Kluyveromyces lactis immobilized cells bioreactor were obtained using the method of Lagrange multipliers. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier produced by radiation polymerization were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) gL(-1). The results indicate that volumetric ethanol productivity is influenced by substrate concentration and dilution rate. The highest value 7.17 gL(-1) h(-1) is obtained at higher lactose concentration (150 gL(-1)) in feed medium and 0.3 h(-1) dilution rate. The same results have been obtained through the application of "LINGO" software for mathematical optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号