首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Meiosis in a sterile male mouse with an isoYq marker chromosome   总被引:1,自引:0,他引:1  
A male mouse with a metacentric Y chromosome of twice the normal size has been studied chromosomally in bone marrow mitoses, spermatogonial mitoses, and diakinesis-metaphase I primary spermatocytes. A low frequency of nondisjunction for this chromosome (2%) was noted in both bone marrow and spermatogonial mitoses. In spermatogonial mitoses, loss of the Y chromosome had occurred to the extent that 12% of spermatogonia were XO, resulting in 17% XO primary spermatocytes. Hardly any stages beyond the primary spermatocyte stage were encountered, which agrees with testis weights of approximately 30% of normal. Surface-spread pachytene spermatocytes yielded few cells that were analyzable for their total complement of synaptonemal complexes. The Y chromosome showed complete fold-back pairing and was located far away from the X chromosome. X and Y chromosomes were paired in 14.5% of the diakinesis-MI spermatocytes that contained a Y chromosome. The origin of this chromosome is discussed against the background of localization of the gene for the testis-determining factor on the short arm of the mouse Y chromosome.  相似文献   

2.
Summary A marked growth in the length of testes ofDrosophila hydei males occurred during pupal development. This growth continued over the first 8 days of adult life and in the young adults sperm were not produced until the testes increased approximately threefold in length to about 28 mm. The length of testes is correlated with genetic factors on the X and Y chromosomes. In males lacking a Y chromosome (X/O) or the short arm (YS) of the Y chromosome (X/YL) the testes were about half the length of testes of control males (X/Y) or double Y males (X/Y/Y). Males with deletions of the distal YL chromosome arm had testicular lengths equivalent to the controls. Males with short testes (X/O and X/YL) showed disruptions to spermatogenesis at meiosis and an absence of normal spermatid elongation. Reduction of active ribosomal RNA genes on the X chromosome in X/O caused an increased expression ofbobbed (bb) and a corresponding reduction in length of testes. Severelybobbed X/O males had very few cysts of spermatogonia and these cysts did not develop into primary spermatocytes.  相似文献   

3.
The male-specific region (MSY) of the Y chromosome contains genes involved mainly in male sex determination and in spermatogenesis. The majority of genes involved in male fertility are localized in multiple copies in the long arm of the Y chromosome, within specific regions defined as "ampliconic regions." It has been suggested that these genes derived from X-linked or autosomal ancestors during evolution, providing a benefit for male fertility when transposed onto the Y chromosome. So far, the autosomal origin has been demonstrated only for two MSY genes, DAZ and CDY. In the present study we report on the identification within chromosome 8q11.2 of a region homologous to the g amplicon, containing the VCY2 (approved gene symbol BPY2), TTTY4, and TTTY17 genes. A search for ancestor genes within the 8q11.2 region allowed us to identify a gene named BEYLA and to characterize the genomic organization and the expression patterns of this gene.  相似文献   

4.
Surface-spread, silver-stained primary spermatocytes from individuals of the Sitka deer mouse (Peromyscus sitkensis) were analyzed by electron microscopy. Pairing of the X and Y chromosomes is initiated at early pachynema and is complete by mid pachynema. The pattern of sex chromosome pairing is unique in that it is initiated at an interstitial position, with subsequent synapsis proceeding in a unidirectional fashion towards the telomeres of the homologous segments. One-third the length of the X and two-thirds the length of the Y are involved in the synaptonemal complex of the sex bivalent. Various morphological complexities develop in the heteropycnotic (unpaired) segments as pachynema progresses, but desynapsis is not initiated until diplonema. Analysis of C-banded diakinetic nuclei indicated that sex chromosome pairing involves the heterochromatic short arm of the X and the long arm of the heterochromatic Y. An interstitial chiasma between the X and Y was observed in the majority of the diakinetic nuclei. The observation of a substantial pairing region and chiasma formation between the sex chromosomes of these deer mice is interpreted as indicating homology between the short arm of the X and the long arm of the Y.  相似文献   

5.
6.
7.
The Sxr (sex-reversed) region that carries a copy of the mouse Y chromosomal testis-determining gene can be attached to the distal end of either the Y or the X chromosome. During male meiosis, Sxr recombined freely between the X and Y chromosomes, with an estimated recombination frequency not significantly different from 50% in either direction. During female meiosis, Sxr recombined freely between the X chromosome to which it was attached and an X-autosome translocation. A male mouse carrying the original Sxra region on its Y chromosome, and the shorter Sxrb variant on the X, also showed 50% recombination between the sex chromosomes. Evidence of unequal crossing-over between the two Sxr regions was obtained: using five markers deleted from Sxrb, 3 variant Sxr regions were detected in 159 progeny (1.9%). Four other variants (one from the original cross and three from later generations) were presumed to have been derived from illegitimate pairing and crossing-over between Sxrb and the homologous region on the short arm of the Y chromosome. The generation of new variants throws light on the arrangement of gene loci and other markers within the short arm of the mouse Y chromosome.  相似文献   

8.
9.
Cytological analysis of the mouse Y* chromosome revealed a complex rearrangement involving acquisition of a functional centromere and centromeric heterochromatin and attachment of this chromosomal segment to the distal end of a normal Y* chromosome. This rearrangement positioned the Y* short-arm region at the distal end of the Y* chromosome and the pseudoautosomal region interstitially, just distal to the newly acquired centromere. In addition, the majority of the pseudoautosomal region was inverted. Recombination between the X and the Y* chromosomes generates two new sex chromosomes: (1) a large chromosome comprised of the X chromosome attached at its distal end to all of the Y* chromosome but missing the centromeric region (XY*) and (2) a small chromosome containing the centromeric portion of the Y* chromosome attached to G-band-negative material from the X chromosome (YX). Mice that inherit the XY* chromosome develop as sterile males, whereas mice that inherit the Y*X chromosome develop as fertile females. Recovery of equal numbers of recombinant and nonrecombinant offspring from XY* males supports the hypothesis that recombination between the mammalian X and Y chromosomes is necessary for primary spermatocytes to successfully complete spermatogenesis and form functional sperm.  相似文献   

10.
The mouse Y chromosome carries 10 distinct genes or gene families that have open reading frames suggestive of retained functionality; it has been assumed that many of these function in spermatogenesis. However, we have recently shown that only two Y genes, the testis determinant Sry and the translation initiation factor Eif2s3y, are essential for spermatogenesis to proceed to the round spermatid stage. Thus, any further substantive mouse Y-gene functions in spermatogenesis are likely to be during sperm differentiation. The complex Ssty gene family present on the mouse Y long arm (Yq) has been implicated in sperm development, with partial Yq deletions that reduce Ssty expression resulting in impaired fertilization efficiency. Here we report the identification of a more extensive Yq deletion that abolishes Ssty expression and results in severe sperm defects and sterility. This result establishes that genetic information (Ssty?) essential for normal sperm differentiation and function is present on mouse Yq.  相似文献   

11.
To generate an animal model that is suitable for the analysis of regulation and expression of human testis-specific protein, Y-encoded TSPY, a transgenic mouse line, TgTSPY9, harboring a complete structural human TSPY gene was generated. Fluorescence in situ hybridization and Southern analyses show that approximately 50 copies of the human TSPY transgene are integrated at a single chromosomal site that maps to the distal long arm of the Y chromosome. The transgene is correctly transcribed and spliced according to the human pattern and is mainly expressed in testicular tissue, with spermatogonia and early primary spermatocytes (leptotene and zygotene) as expressing germ cells. TSPY transgenic mice are phenotypically normal, and spermatogenesis is neither impaired nor enhanced by the human transgene. The present study shows that a human TSPY gene integrated into the mouse genome follows the human expression pattern although murine tspy had lost its function in rodent evolution millions of years ago.  相似文献   

12.
J. L. Oud  R. Scholten 《Genetica》1982,58(1):55-63
The staining of male Chinese hamster chromosomes at meiotic prophase with several banding techniques is described. C-banding results only occasionally in well-differentiated pachytene and diakinesis bivalents. Meiotic C-bands are small compared with those in somatic metaphase chromosomes. In mice C-bands mainly consist of highly repetitive satellite DNA, whereas in Chinese hamsters the majority of the DNA in C-bands is not or hardly repetitive. Especially in Chinese hamsters both the degree of chromatin despiralisation and the folding pattern of the chromatin drastically reduce the distinction of C-bands in late meiotic prophasc chromosomes. In contrast to the situation in mice, C-heterochromatin associations are never observed in Chinese hamster spermatocytes. It is assumed that the presence of satellite DNA rather than constitutive heterochromatin is the basis for the associations of the paracentromeric chromosome regions in mice. The location and behaviour of AT- and GC-rich DNA in Chinese hamster primary spermatocytes is studied with base-specific fluorochromes (H 33258 and Chromomycin A3 for AT-and GC-rich DNA respectively), in combination with a pretreatment with base-specific non-fluorescent antibiotics (Actinomycin D and Netropsin for GC-and AT-rich DNA respectively). No indications are found for the clustering of AT-or GC-rich DNA in Chinese hamster pachytene nuclei. A comparison of banding patterns observed in somatic metaphases and in diakinesis gives some information about the partial homology of the X and Y chromosome. The results are conflicting. The short arm of the Y chromosome is homologous with a part of the X chromosome. According to the C-band pattern the long arm of the X chromosome is involved in the pairing with Y, whereas fluorescence banding patterns indicate that it is the short arm of X.  相似文献   

13.
14.
The behavior of the X and Y chromosomes in somatic and testicular cells of the sand rat (P. obesus) has been investigated with light and electron-microscope procedures. The Y chromosome has been identified as the fourth longest of the complement, both by C-banding and by its meiotic behavior. The X chromosome is the longest of the complement and carries two major C-heterochromatic blocks, one in the distal part of the long arm and the other forming most of the short arm. During presynaptic stages in spermatocytes, separate C-heterochromatic blocks, representing the sex chromosomes, are observed in the nuclei. An XY body is regularly formed at pachytene. During first meiotic metaphase the X and Y chromosomes show variable associations, none of them chiasmatic. Second meiotic metaphases contain, as in other mammals, a single sex chromosome, suggesting normal segregation between the X and the Y. — Electron microscopic observations of the autosomal synaptonemal complexes (SCs) and the single axes of the X and Y chromosomes during pachytene permit accurate, statistically significant identification of each of the largest chromosomes of the complement and determination of the mean arm ratios of the X and Y axes. The X and Y axes always lie close to each other but do not form a SC. The ends of the X and Y axes are attached to the nuclear envelope and associate with each other in variable ways, both autologously (X with X or Y with Y) and heterologously (X with Y), with a tendency to form a maximum number (four) of associated ends. Analysis of 36 XY pairs showed no significant preference for any single specific attachment between arm ends. The eighth longest autosomal bivalent is frequently partially asynaptic during early pachytene, and only at that time is often near or touching one end of the X axis. — It is concluded that while axis formation and migration of the axes along the plane of the nuclear envelope proceed normally in the X and Y chromosomes, true synapsis (with SC formation) does not occur because the pairing region of the X chromosome has probably been relocated far from the chromosome termini by the insertion of distal C-heterochromatic blocks.  相似文献   

15.
The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes.The human Y chromosome (60 Mb long) is largely composed of repeti-tive sequences that give it a heterochromatic appearance,and it consists of pseudoautosomal,euchromatic,and heterochromatic regions.Located on the two extremities of the Y chromosome,pseudoautosomal regions 1 and 2 (PAR1 and PAR2,2.6 Mb and 320 bp long,re-spectively) are homologs with the termini of the X chromosome.The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY),which occupy more than 95% of the whole Y chromosome.After evolu-tion,the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related.The Y chromosome is characterized by highly repetitive sequences (including direct repeats,inverted repeats,and palindromes) and high polymorphism.Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure.The consequences of such rearrangements are not only loss but also gain of specific genes.One hundred and fifty three haplotypes have been discovered in the human Y chromosome.The structure of the Y chromosome in the GenBank belongs to haplotype R1.There are 220 genes (104 coding genes,111 pseudogenes,and 5 other uncategorized genes) according to the most recent count.The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families).Among them,16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis.It has been dis-covered that one subset of gene rearrangements on the Y chromosome,"micro-deletions",is a major cause of male infertility in some populations.However,controversies exist about different Y chromosome haplotypes.Six AZFs of the Y chromosome have been discov-ered including AZFa,AZFb,AZFc,and their combinations AZFbc,AZFabc,and partial AZFc called AZFc/gr/gr.Different deletions in AZF lead to different content spermatogenesis loss from teratozoospermia to infertility in different populations depending on their Y hap-lotypes.This article describes the structure of the human Y chromosome and investigates the causes of micro-deletions and their relation-ship with male infertility from the view of chromosome evolution.After analysis of the relationship between AZFc and male infertility,we concluded that spermatogenesis is controlled by a network of genes,which may locate on the Y chromosome,the autochromosomes,or even on the X chromosome.Further investigation of the molecular mechanisms underlying male fertility/infertifity will facilitate our knowledge of functional genomics.  相似文献   

16.
17.
X Chromosome Inactivation during Drosophila Spermatogenesis   总被引:1,自引:1,他引:0  
Genes with male- and testis-enriched expression are under-represented on the Drosophila melanogaster X chromosome. There is also an excess of retrotransposed genes, many of which are expressed in testis, that have “escaped” the X chromosome and moved to the autosomes. It has been proposed that inactivation of the X chromosome during spermatogenesis contributes to these patterns: genes with a beneficial function late in spermatogenesis should be selectively favored to be autosomal in order to avoid inactivation. However, conclusive evidence for X inactivation in the male germline has been lacking. To test for such inactivation, we used a transgenic construct in which expression of a lacZ reporter gene was driven by the promoter sequence of the autosomal, testis-specific ocnus gene. Autosomal insertions of this transgene showed the expected pattern of male- and testis-specific expression. X-linked insertions, in contrast, showed only very low levels of reporter gene expression. Thus, we find that X linkage inhibits the activity of a testis-specific promoter. We obtained the same result using a vector in which the transgene was flanked by chromosomal insulator sequences. These results are consistent with global inactivation of the X chromosome in the male germline and support a selective explanation for X chromosome avoidance of genes with beneficial effects late in spermatogenesis.  相似文献   

18.
Ryukyu spiny rats (genus Tokudaia), which are endemic to the central part of the Nansei Shoto archipelago in Japan, have unique karyotypes with odd numbers of chromosomes and no cytologically recognizable Y chromosome. The chromosome numbers of Tokudaia osimensis from Amamioshima and of Tokudaia sp. from Tokunoshima are 2n = 25 and 2n = 45, respectively, with a putative single X chromosome. The mouse X probe hybridized to the unpaired X chromosome, except for the distal part of the short arm in a female specimen of T. osimensis and in one male and one female of Tokudaia sp. Fluorescence in situ hybridization with the Tspy (testis-specific protein, Y-encoded) gene from both male and female cells of Tokudaia sp. by PCR localized Tspy to the distal part of the long arm of the X chromosome. Another Y-related gene, Zfy, from Tokudaia sp. was also localized to the same region in both species. Although the Sry gene is absent in this species, the present results suggest that the Y-chromosome segment carrying functional Y-linked genes, such as Tspy and Zfy, is translocated onto the distal part of the long arm of the X chromosome.  相似文献   

19.
20.
S. Pathak  C. C. Lin 《Chromosoma》1981,82(3):367-376
Bright-field microscopy of silver-stained pachytene spermatocytes of a male Indian muntjac, Muntiacus muntjak revealed that (a) the synapsis between the autosomal homologs, including the long arm of the X and Y2, was normal, (b) the nucleolus organizer regions were present in both the No. 1 bivalent and the long arm of the X and Y2, (c) the accessory structures of the X chromosome short arm in the forms of light and dark thickenings and the hairpin-like bend were present despite the X-autosome translocation, (d) a short synaptonemal complex was present between the Y1 (real Y) and the short arm of the X chromosome, and (e) the centromeric orientation of the Y1 and Y2 chromosomes was in Cis configuration as opposed to the X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号