首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most excitatory synaptic terminals in the brain impinge on dendritic spines. We and others have recently shown that dynamic microtubules (MTs) enter spines from the dendritic shaft. However, a direct role for MTs in long-lasting spine plasticity has yet to be demonstrated and it remains unclear whether MT-spine invasions are directly influenced by synaptic activity. Lasting changes in spine morphology and synaptic strength can be triggered by activation of synaptic NMDA receptors (NMDARs) and are associated with learning and memory processes. To determine whether MTs are involved in NMDAR-dependent spine plasticity, we imaged MT dynamics and spine morphology in live mouse hippocampal pyramidal neurons before and after acute activation of synaptic NMDARs. Synaptic NMDAR activation promoted MT-spine invasions and lasting increases in spine size, with invaded spines exhibiting significantly faster and more growth than non-invaded spines. Even individual MT invasions triggered rapid increases in spine size that persisted longer following NMDAR activation. Inhibition of either NMDARs or dynamic MTs blocked NMDAR-dependent spine growth. Together these results demonstrate for the first time that MT-spine invasions are positively regulated by signaling through synaptic NMDARs, and contribute to long-lasting structural changes in targeted spines.  相似文献   

2.
Postembryonic development in the kinorhynch species Antygomonas incomitata was examined using scanning electron microscopy. The morphology of the six juvenile stages, J‐1 to J‐6, varies at numerous details, but they can also be distinguished by a few key characters. Juvenile stage 1 by its composition of only nine trunk segments; J‐2 by the combination of possessing 10 trunk segments, but no cuspidate spines on segment 9; J‐3 by the presence of cuspidate spines on segment 9, but only one pair of cuspidate spines on segment 8; J‐4 by the combination of 10 trunk segments only, but having two pairs of cuspidate spines on segment 8; J‐5 by possessing 11 trunk segments and same spine compositions as adults but is still maintaining postmarginal spiculae; J‐6 specimens closely resemble adults and are most easily identified by their reduced trunk lengths. New segments are formed in a growth zone in the anterior part of the terminal segment. The complete number of segments is reached in J‐5. Development of cuticular head and trunk structures are described through all postembryonic stages and following developmental patterns could be outlined: the mouth cone possesses outer oral styles from J‐1, but in J‐1 to J‐3, the styles alternate in size. Scalids of the introvert are added after each molt, and scalids appear earliest in the anterior rings, whereas scalids in more posterior rings are added in older postembryonic stages. The early J‐1 stage is poor in spines and sensory spots and both structures increase in number after each molt. The complete spine composition is reached in J‐4, whereas new sensory spots appear after all molts, inclusive the final one from J‐6 to adult. Sensory spots in the paraventral positions often appear as Type 3 sensory spots but are through development transformed to Type 2. This transformation happens earliest on the anterior segments. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer’s disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4’s cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19–21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7–8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.  相似文献   

4.
Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG) granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9%) and 1 month (26.9%) after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7%) in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.  相似文献   

5.
Verkuyl JM  Matus A 《Nature protocols》2006,1(5):2399-2405
Dendritic spines are small protrusions present postsynaptically at approximately 90% of excitatory synapses in the brain. Spines undergo rapid spontaneous changes in shape that are thought to be important for alterations in synaptic connectivity underlying learning and memory. Visualization of these dynamic changes in spine morphology are especially challenging because of the small size of spines (approximately 1 microm). Here we describe a microscope system, based on a spinning-disk confocal microscope, suitable for imaging mature dendritic spines in brain slice preparations, with a time resolution of seconds. We discuss two commonly used in vitro brain slice preparations and methods for transfecting them. Preparation and transfection require approximately 1 d, after which slices must be cultured for at least 21 d to obtain spines of mature morphology. We also describe imaging and computer analysis routines for studying spine motility. These procedures require in the order of 2 to 4 h.  相似文献   

6.
The morphology of 16 occipital spines of the xenacanthid Orthacanthus from Upper Carboniferous deposits of Robinson (Kansas, USA), Nýřan (Czech Republic) and Puertollano (Spain) is described. The nonreplaced spines reveal the growth pattern of the shark. Moreover, the relationship between growth and paleoenvironmental conditions can be used to determine paleoecological conditions. Both external and internal morphology indicate that the spine was superficially inserted in the skin. During growth, the spine moved from a deep position in the dermis, in which trabecular dentine is formed, to a more superficial location in which centrifugally growing lamellar dentine was formed. Centripetally growing lamellar dentine was deposited more slowly than the centrifugally growing dentine; it obliterated the pulp cavity. The denticles are independent dermal elements formed by a dermal papilla and secondarily attached by dentine to the spine proper. The number of denticles per annual cycle and the density of denticulation vary with the growth rate. Moreover, the ratio of length of denticulated region to total length of the spine changes throughout ontogeny. In consequence, those features cannot be used for systematic purposes without a careful analysis of the variability. Centrifugally growing lamellar dentine in spines from Robinson shows a regular alternation of layers, suggesting tidal conditions in the environment in which the sharks lived. Monthly and seasonal cycles also occur. Tidal (lunar) cyclicity is also observed in the denticles: size and distance between denticles increase and decrease gradually, forming waves that are considered seasonal and yearly cycles. The observed regularity could be related to the variation in calcium phosphate deposition following the cyclical changes in water temperature produced in the tidal zone. Monthly and seasonal cycles are the result of the interaction of the solar and tidal (lunar) cycles. The cyclical pattern of growth is used to determine the age and growth rates. Orthacanthus was a fast‐growing shark like the Recent sharks Isurus, Mustelus, and Negaprion. J. Morphol. 242:1–45, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
树突棘是神经元树突上的功能性突起结构,通常作为突触后成份与投射来的轴突共同构成完整的突触连接。树突棘的形态与结构具有明显的可塑性,其变化通常会引起突触功能的改变。Eph受体酪氨酸激酶家族分子与其配体ephrin都是重要的神经导向因子,同时对树突棘结构也有直接的调控作用。Eph受体的活化可以促进树突棘的发生并影响树突棘的形态及内部结构;而Eph受体的异常也往往会损害正常的突触功能,甚至导致许多与树突棘结构异常相关的神经系统病变的发生。  相似文献   

8.
Dendritic spines are micron-sized protrusions that constitute the primary post-synaptic sites of excitatory neurotransmission in the brain. Spines mature from a filopodia-like protrusion into a mushroom-shaped morphology with a post-synaptic density (PSD) at its tip. Modulation of the actin cytoskeleton drives these morphological changes as well as the spine dynamics that underlie learning and memory. Several PSD molecules respond to glutamate receptor activation and relay signals to the underlying actin cytoskeleton to regulate the structural changes in spine and PSD morphology. α-Actinin-2 is an actin filament cross-linker, which localizes to dendritic spines, enriched within the post-synaptic density, and implicated in actin organization. We show that loss of α-actinin-2 in rat hippocampal neurons creates an increased density of immature, filopodia-like protrusions that fail to mature into a mushroom-shaped spine during development. α-Actinin-2 knockdown also prevents the recruitment and stabilization of the PSD in the spine, resulting in failure of synapse formation, and an inability to structurally respond to chemical stimulation of the N-methyl-D-aspartate (NMDA)-type glutamate receptor. The Ca2+-insensitive EF-hand motif in α-actinin-2 is necessary for the molecule''s function in regulating spine morphology and PSD assembly, since exchanging it for the similar but Ca2+-sensitive domain from α-actinin-4, another α-actinin isoform, inhibits its function. Furthermore, when the Ca2+-insensitive domain from α-actinin-2 is inserted into α-actinin-4 and expressed in neurons, it creates mature spines. These observations support a model whereby α-actinin-2, partially through its Ca2+-insensitive EF-hand motif, nucleates PSD formation via F-actin organization and modulates spine maturation to mediate synaptogenesis.  相似文献   

9.
The ε4 allele of the gene that encodes apolipoprotein E (APOE4) is the greatest genetic risk factor for Alzheimer''s disease (AD), while APOE2 reduces AD risk, compared to APOE3. The mechanism(s) underlying the effects of APOE on AD pathology remains unclear. In vivo, dendritic spine density is lower in APOE4-targeted replacement (APOE-TR) mice compared with APOE2- and APOE3-TR mice. To investigate whether this apoE4-induced decrease in spine density results from alterations in the formation or the loss of dendritic spines, the effects of neuron age and apoE isoform on the total number and subclasses of spines were examined in long-term wild-type neurons co-cultured with glia from APOE2-, APOE3- and APOE4-TR mice. Dendritic spine density and maturation were evaluated by immunocytochemistry via the presence of drebrin (an actin-binding protein) with GluN1 (NMDA receptor subunit) and GluA2 (AMPA receptor subunit) clusters. ApoE isoform effects were analyzed via a method previously established that identifies phases of spine formation (day-in-vitro, DIV10–18), maintenance (DIV18–21) and loss (DIV21–26). In the formation phase, apoE4 delayed total spine formation. During the maintenance phase, the density of GluN1+GluA2 spines did not change with apoE2, while the density of these spines decreased with apoE4 compared to apoE3, primarily due to the loss of GluA2 in spines. During the loss phase, total spine density was lower in neurons with apoE4 compared to apoE3. Thus, apoE4 delays total spine formation and may induce early synaptic dysfunction via impaired regulation of GluA2 in spines.  相似文献   

10.
甘蓝型油菜花瓣缺失基因的图谱定位   总被引:4,自引:1,他引:3  
在无花瓣品系APT02和正常有花瓣品种中双4号构建的的F2分离群体中,运用AFLP和SRAP两种标记技术对甘蓝型油菜花瓣缺失基因进行分子标记和图谱定位。在两亲本间筛选20对AFLP引物和170对SRAP 引物,进一步通过BSA法筛选,获得了与甘蓝型油菜花瓣缺失基因WHB连锁的1个SRAP标记e8m3_4(600bp)和1个AFLP标记E3247_15(150bp),标记与基因WHB之间的遗传距离分别为5 cM和13.5cM;构建了一个甘蓝型油菜(Brassica napus.L )的分子标记遗传连锁图谱,该图谱共包含213个AFLP标记、56个SRAP标记和1个形态标记,分布于17个主要连锁群、两个三联体和4个连锁对中,遗传图距总长2487.1cM,标记间平均距离为10.09 cM。通过图谱定位,控制花瓣缺失性状的基因WHB被定位到第4连锁群(LG4)上。  相似文献   

11.
Dendritic spines receive most excitatory inputs in the CNS. Recent evidence has demonstrated that the spine head volume is linearly correlated with the readily releasable pool of neurotransmitter and the PSD size. These correlations can be used to functionally interpret spine morphology. Using Golgi impregnations and light microscopy, we reconstructed 23000 spines from pyramidal neurons in layers 2/3, 4, 5 and 6 of mouse primary visual cortex and CA1 hippocampal region and measured their spine head diameters and densities. Spine head diameters and densities are variable within and across cells, although they are similar between apical and basal dendrites. When compared to other regions, layer 5 neurons have larger spine heads and CA1 neurons higher spine densities. Interestingly, we detect a correlation between spine head diameter and interspine distance within and across cells, whereby larger spines are spaced further away from each other than smaller spines. Finally, in CA1 neurons, spine head diameters are larger, and spine density lower, in distal apical dendrites (>200 microm from soma) compared to proximal regions. These results reveal that spine morphologies and densities, and therefore synaptic properties, are jointly modulated with respect to cortical region, laminar position, and, in some cases, even the position of the spine along the dendritic tree. Individual neurons also appear to regulate their apical and basal spine densities and morphologies in concert. Our data provide evidence for a homeostatic control of excitatory synaptic strength.  相似文献   

12.
Dendritic spines are small mushroom-like protrusions arising from neurons where most excitatory synapses reside. Their peculiar shape suggests that spines can serve as an autonomous postsynaptic compartment that isolates chemical and electrical signaling. How neuronal activity modifies the morphology of the spine and how these modifications affect synaptic transmission and plasticity are intriguing issues. Indeed, the induction of long-term potentiation (LTP) or depression (LTD) is associated with the enlargement or shrinkage of the spine, respectively. This structural plasticity is mainly controlled by actin filaments, the principal cytoskeletal component of the spine. Here we review the pioneering microscopic studies examining the structural plasticity of spines and propose how changes in actin treadmilling might regulate spine morphology.  相似文献   

13.
A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been quantifying three-dimensional (3D) spine shapes with sufficient precision to distinguish morphologic types, and sufficient throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic spines from laser scanning microscopy (LSM) images that directly addresses these limitations. The system is more accurate, and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines that are undetectable with standard two-dimensional (2D) tools. Adaptive local thresholding, voxel clustering and Rayburst Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function.  相似文献   

14.
ABSTRACT: BACKGROUND: Quantitative analysis of changes in dendritic spine morphology has become an interesting issue in contemporary neuroscience. However, the diversity in dendritic spines population might seriously influence the results of measurements in which their morphology is studied, the detection of differences in spine morphology between control and test group is often compromised by the number of dendritic spines taken for analysis. In order to estimate how severe is such an impact we have performed Monte Carlo simulations examining various experimental setups and statistical approaches. The confocal images of dendritic spines from hippocampal dissociated cultures have been used to create a set of variables exploited as the simulation resources. RESULTS: The tabulated results of simulations are given, providing the number of dendritic spines required for the detection of hidden morphological differences between control and test group, in spine head-width, length and area. It turns out that this is the head-width among these three variables, where the changes are most easily detected. Simulation of changes occurring in a subpopulation of spines reveal the strong dependence of detectability on the statistical approach applied. The analysis based on comparison of percentage of spines in subclasses is less sensitive than the direct comparison of relevant variables describing spines morphology. CONCLUSIONS: We evaluated the sampling aspect and effect of systematic morphological variation on detecting the differences in spine morphology. Provided results may serve as a guideline in selecting the number of samples to be studied in a planned experiment. Our simulations might be a step towards the development of a standardized method of quantitative comparison of dendritic spines morphology, in which different sources of errors are considered.  相似文献   

15.
Dendritic spines are protrusions from the dendritic shaft that host most excitatory synapses in the brain. Although they first emerge during neuronal maturation, dendritic spines remain plastic through adulthood, and recent advances in the molecular mechanisms governing spine morphology have shown them to be exquisitely sensitive to changes in the micro-environment. Among the many factors affecting spine morphology are components and regulators of the extracellular matrix (ECM). Modification of the ECM is critical to the repair of injuries throughout the body, including the CNS. Matrix metalloproteinase (MMP)-7/matrilysin is a key regulator of the ECM during pathogen infection, after nerve crush and in encephalitogenic disorders. We have investigated the effects of MMP-7 on dendritic spines in hippocampal neuron cultures and found that it induces the transformation of mature, short mushroom-shaped spines into long, thin filopodia reminiscent of immature spines. These changes were accompanied by a dramatic redistribution of F-actin from spine heads into thick, rope-like structures in the dendritic shaft. Strikingly, MMP-7 effects on dendritic spines were similar to those of NMDA treatment, and both could be blocked by channel-specific antagonists. These findings are the first direct evidence that MMPs can influence the morphology of mature dendritic spines, and hence synaptic stability.  相似文献   

16.
Do thin spines learn to be mushroom spines that remember?   总被引:5,自引:0,他引:5  
Dendritic spines are the primary site of excitatory input on most principal neurons. Long-lasting changes in synaptic activity are accompanied by alterations in spine shape, size and number. The responsiveness of thin spines to increases and decreases in synaptic activity has led to the suggestion that they are 'learning spines', whereas the stability of mushroom spines suggests that they are 'memory spines'. Synaptic enhancement leads to an enlargement of thin spines into mushroom spines and the mobilization of subcellular resources to potentiated synapses. Thin spines also concentrate biochemical signals such as Ca(2+), providing the synaptic specificity required for learning. Determining the mechanisms that regulate spine morphology is essential for understanding the cellular changes that underlie learning and memory.  相似文献   

17.
Dendritic spines are small, mushroom-like protrusions from the arbor of a neuron in the central nervous system. Interdependent changes in the morphology, biochemistry, and activity of spines have been associated with learning and memory. Moreover, post-mortem cortices from patients with Alzheimer’s or Parkinson’s disease exhibit biochemical and physical alterations within their dendritic arbors and a reduction in the number of dendritic spines. For over a decade, experimentalists have observed perforations in postsynaptic densities on dendritic spines after induction of long-term potentiation, a sustained enhancement of response to a brief electrical or chemical stimulus, associated with learning and memory. In more recent work, some suggest that activity-dependent intraspine calcium may regulate the surface area of the spine head, and reorganization of postsynaptic densities on the surface. In this paper, we develop a model of a dendritic spine with the ability to partition its transmission and receptor zones, as well as the entire spine head. Simulations are initially performed with fixed parameters for morphology to study electrical properties and identify parameters that increase efficacy of the synaptic connection. Equations are then introduced to incorporate calcium as a second messenger in regulating continuous changes in morphology. In the model, activity affects compartmental calcium, which regulates spine head morphology. Conversely, spine head morphology affects the level of local activity, whether the spines are modeled with passive membrane properties, or excitable membrane using Hodgkin–Huxley kinetics. Results indicate that merely separating the postsynaptic receptors on the surface of the spine may add to the diversity of circuitry, but does not change the efficacy of the synapse. However, when the surface area of the spine is a dynamic variable, efficacy of the synapse may vary continuously over time.  相似文献   

18.
Four new species of Cyclopoida from deep-sea waters are described and placed in two new genera: Giselina gen. n. and Sensogiselina gen. n. The new genera and species belong to a new monophyletic group within the cyclopinid cyclopoids. A new name, Giselinidae, is proposed for this monophylum. The new family is characterised by the combination of the following characters: (1) tergite of leg 1 fused to cephalosome dorsally, but incompletely fused laterally, (2) absence of aesthetascs on ancestral antennulary segments XVI, XXI and XXV, (3) absence of antennary exopodal setae, (4) presence of only three spines on distal exopodal segment of leg 1, (5) absence of inner setae on first endopodal segments of legs 1–4, (6) outer terminal and distal inner elements of distal endopodal segment of leg 4 transformed into spines, (7) distal outer element of leg 5 exopod transformed into a spine, (8) leg 6 with only one seta, and (9) furcal setae I and III located on dorsal margin. Received in revised form: 16 June 2000 Electronic Publication  相似文献   

19.
Most research on ontogenetic niche shifts has focused on changes in habitat or resource use related to food resource distribution and heterospecific size-limited predation. Cannibalism, an intraspecific interaction, can also affect habitat selection or resource use by vulnerable size classes. Morphological defenses, such as spines, increase the effective size of an individual, making it more difficult to consume. The importance of such defense structures in affecting niche shifts in early life history stages is unclear. Using a combination of field observations and experiments in aquaria and wading pools, we examined the relative roles of cannibalism and morphology in determining juvenile habitat use in two populations of threespine stickleback that differ in pelvic spine morphology. Juveniles were categorized into three size classes: small (5–10 mm), medium (11–15 mm), and large (15–25 mm). In experiments assessing the relative vulnerability of juveniles to cannibalism by adults, we documented a significant difference among size classes in the number of juveniles eaten such that more large juveniles were eaten from the population lacking pelvic spines. The natural distribution of small and large juveniles in two distinct littoral microhabitats, open water and vegetation, was determined in each lake. In both populations, small juveniles were more abundant in vegetation. In the population with pelvic spines, a greater proportion of large juveniles was observed in open water than in vegetation. In the population without pelvic spines, the proportion of large juveniles did not differ between the two habitats. Experiments comparing juvenile habitat use in the presence or absence of adult conspecifics suggest that differences in habitat use may not only depend on the size of the individual, or the size of the individual relative to the size of the adult predator, but also on the degree of development or expression of defensive structures.  相似文献   

20.
The morphology of the lumbar spine is crucial for upright posture and bipedal walking in hominids. The excellent preservation of the lumbar spine of Kebara 2 provides us a rare opportunity to observe a complete spine and explore its functionally relevant morphology. The lumbar spine of Kebara 2 is analyzed and compared with the lumbar spines of modern humans and late Pleistocene hominids. Although no size differences between the vertebral bodies and pedicles of Kebara 2 and modern humans are found, significant differences in the size and orientation of the transverse processes (L1‐L4), and the laminae (L5, S1) are demonstrated. The similarity in the size of the vertebral bodies and pedicles of Kebara 2 and modern humans suggests similarity in axial load transmission along the lumbar spine. The laterally projected (L2‐L4) and the cranially oriented (L1, L3) transverse processes of Kebara 2 show an advantage for lateral flexion of the lumbar spine compared with modern humans. The characteristic morphology of the lumbar spine of Kebara 2 might be related to the wide span of its pelvic bones. Am J Phys Anthropol 142:549–557, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号